SCOTUS_AI_14 / app.py
raminass's picture
Update app.py
f100119 verified
import gradio as gr
from transformers import pipeline
from utils import *
from datasets import load_dataset
import json
# pipe = pipeline(model="raminass/SCOTUS_AI_14", top_k=14, padding=True, truncation=True)
pipe = pipeline(model="raminass/SCOTUS_AI_V14", top_k=14, padding=True, truncation=True)
all = load_dataset("raminass/full_opinions_1994_2020")
df = pd.DataFrame(all["train"])
choices = []
for index, row in df[df.category == "per_curiam"].iterrows():
if len(row["text"]) > 1000:
choices.append((f"""{row["case_name"]}""", [row["text"], row["year_filed"]]))
with open("j_year.json", "r") as j:
judges_by_year = json.loads(j.read())
judges_by_year = {int(k): v for k, v in judges_by_year.items()}
# https://www.gradio.app/guides/controlling-layout
def greet(opinion, judges_l):
chunks = chunk_data(remove_citations(opinion))["text"].to_list()
result = average_text(chunks, pipe, judges_l)
return result[0]
def set_input(drop):
return drop[0], drop[1], gr.Slider(visible=True)
def update_year(year):
return gr.CheckboxGroup(
judges_by_year[year],
value=judges_by_year[year],
label="Select Justices",
)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=2):
drop = gr.Dropdown(
choices=sorted(choices),
label="List of Per Curiam Opinions",
info="Select a per curiam opinion from the dropdown menu and press the Predict Button",
)
year = gr.Slider(
1994,
2023,
step=1,
label="Year",
info="Select the year of the opinion if you manually paste the opinion below",
)
exc_judg = gr.CheckboxGroup(
judges_by_year[year.value],
value=judges_by_year[year.value],
label="Select Justices",
info="Select justices to consider in prediction",
)
opinion = gr.Textbox(
label="Opinion", info="Paste opinion text here and press the Predict Button"
)
with gr.Column(scale=1):
with gr.Row():
clear_btn = gr.Button("Clear")
greet_btn = gr.Button("Predict")
op_level = gr.outputs.Label(
num_top_classes=9, label="Predicted author of opinion"
)
year.release(
update_year,
inputs=[year],
outputs=[exc_judg],
)
year.change(
update_year,
inputs=[year],
outputs=[exc_judg],
)
drop.select(set_input, inputs=drop, outputs=[opinion, year, year])
greet_btn.click(
fn=greet,
inputs=[opinion, exc_judg],
outputs=[op_level],
)
clear_btn.click(
fn=lambda: [None, 1994, gr.Slider(visible=True), None, None],
outputs=[opinion, year, year, drop, op_level],
)
if __name__ == "__main__":
demo.launch(
auth=("sc2024", "sc2024"),
auth_message="To request access, please email [email protected]",
)