SCOTUS_AI_15 / app.py
raminass's picture
Upload folder using huggingface_hub
926ab2a
raw
history blame
2.54 kB
import gradio as gr
from transformers import pipeline
from utils import *
from datasets import load_dataset
pipe = pipeline(model="raminass/scotus-v10", top_k=13, padding=True, truncation=True)
all = load_dataset("raminass/full_opinions_1994_2020")
df = pd.DataFrame(all["train"])
choices = []
for index, row in df[df.category == "per_curiam"].iterrows():
if len(row["text"]) > 1000:
choices.append((f"""{row["case_name"]}""", [row["text"], row["year_filed"]]))
max_textboxes = 100
# https://www.gradio.app/guides/controlling-layout
def greet(opinion, year):
judges_l = (
df[(df["year_filed"] == year) & (df["category"] != "per_curiam")]
.author_name.unique()
.tolist()
)
chunks = chunk_data(remove_citations(opinion))["text"].to_list()
result = average_text(chunks, pipe, judges_l)
k = len(chunks)
wrt_boxes = []
for i in range(k):
wrt_boxes.append(gr.Textbox(chunks[i], visible=True))
wrt_boxes.append(gr.Label(value=result[1][i], visible=True))
return (
[result[0]]
+ wrt_boxes
+ [gr.Textbox(visible=False), gr.Label(visible=False)] * (max_textboxes - k)
)
def set_input(drop):
return drop[0], drop[1], gr.Slider(visible=False)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
opinion = gr.Textbox(label="Opinion")
year = gr.Slider(1994, 2020, step=1, label="Year")
drop = gr.Dropdown(choices=sorted(choices))
with gr.Row():
clear_btn = gr.Button("Clear")
greet_btn = gr.Button("Predict")
op_level = gr.outputs.Label(num_top_classes=13, label="Overall")
textboxes = []
for i in range(max_textboxes):
with gr.Row():
t = gr.Textbox(f"Textbox {i}", visible=False, label=f"Paragraph {i+1} Text")
par_level = gr.Label(
num_top_classes=5, label=f"Paragraph {i+1} Prediction", visible=False
)
textboxes.append(t)
textboxes.append(par_level)
drop.select(set_input, inputs=drop, outputs=[opinion, year, year])
greet_btn.click(
fn=greet,
inputs=[opinion, year],
outputs=[op_level] + textboxes,
)
clear_btn.click(
fn=lambda: [None, 1994, gr.Slider(visible=True), None, None]
+ [gr.Textbox(visible=False), gr.Label(visible=False)] * max_textboxes,
outputs=[opinion, year, year, drop, op_level] + textboxes,
)
if __name__ == "__main__":
demo.launch()