import gradio as gr from transformers import pipeline from utils import * from datasets import load_dataset pipe = pipeline(model="raminass/scotus-v10", top_k=13, padding=True, truncation=True) all = load_dataset("raminass/full_opinions_1994_2020") df = pd.DataFrame(all["train"]) choices = [] for index, row in df[df.category == "per_curiam"].iterrows(): choices.append((f"""{row["case_name"]}""", row["text"])) max_textboxes = 100 # https://www.gradio.app/guides/controlling-layout def greet(opinion): chunks = chunk_data(remove_citations(opinion))["text"].to_list() result = average_text(chunks, pipe) k = len(chunks) wrt_boxes = [] for i in range(k): wrt_boxes.append(gr.Textbox(chunks[i], visible=True)) wrt_boxes.append(gr.Label(value=result[1][i], visible=True)) return ( [result[0]] + wrt_boxes + [gr.Textbox(visible=False), gr.Label(visible=False)] * (max_textboxes - k) ) def set_input(drop): return drop with gr.Blocks() as demo: opinion = gr.Textbox(label="Opinion") op_level = gr.outputs.Label(num_top_classes=13, label="Overall") drop = gr.Dropdown(choices=sorted(choices)) greet_btn = gr.Button("Predict") textboxes = [] for i in range(max_textboxes): t = gr.Textbox(f"Textbox {i}", visible=False, label=f"Paragraph {i+1} Text") par_level = gr.Label( num_top_classes=5, label=f"Paragraph {i+1} Prediction", visible=False ) textboxes.append(t) textboxes.append(par_level) drop.select(set_input, inputs=drop, outputs=[opinion]) greet_btn.click( fn=greet, inputs=opinion, outputs=[op_level] + textboxes, ) if __name__ == "__main__": demo.launch()