import gradio as gr from transformers import pipeline from utils import * from datasets import load_dataset import json # pipe = pipeline(model="raminass/SCOTUS_AI_15", top_k=15, padding=True, truncation=True) pipe = pipeline(model="raminass/SCOTUS_AI_V15", top_k=15, padding=True, truncation=True) all = load_dataset("raminass/full_opinions_1994_2020") df = pd.DataFrame(all["train"]) choices = [] for index, row in df[df.category == "per_curiam"].iterrows(): if len(row["text"]) > 1000: choices.append((f"""{row["case_name"]}""", [row["text"], row["year_filed"]])) with open("j_year.json", "r") as j: judges_by_year = json.loads(j.read()) judges_by_year = {int(k): v for k, v in judges_by_year.items()} # https://www.gradio.app/guides/controlling-layout def greet(opinion, judges_l): chunks = chunk_data(remove_citations(opinion))["text"].to_list() result = average_text(chunks, pipe, judges_l) return result[0] def set_input(drop): return drop[0], drop[1], gr.Slider(visible=True) def update_year(year): return gr.CheckboxGroup( judges_by_year[year], value=judges_by_year[year], label="Select Justices", ) with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=2): drop = gr.Dropdown( choices=sorted(choices), label="List of Per Curiam Opinions", info="Select a per curiam opinion from the dropdown menu and press the Predict Button", ) year = gr.Slider( 1994, 2023, step=1, label="Year", info="Select the year of the opinion if you manually paste the opinion below", ) exc_judg = gr.CheckboxGroup( judges_by_year[year.value], value=judges_by_year[year.value], label="Select Justices", info="Select justices to consider in prediction", ) opinion = gr.Textbox( label="Opinion", info="Paste opinion text here and press the Predict Button" ) with gr.Column(scale=1): with gr.Row(): clear_btn = gr.Button("Clear") greet_btn = gr.Button("Predict") op_level = gr.outputs.Label( num_top_classes=9, label="Predicted author of opinion" ) year.release( update_year, inputs=[year], outputs=[exc_judg], ) year.change( update_year, inputs=[year], outputs=[exc_judg], ) drop.select(set_input, inputs=drop, outputs=[opinion, year, year]) greet_btn.click( fn=greet, inputs=[opinion, exc_judg], outputs=[op_level], ) clear_btn.click( fn=lambda: [None, 1994, gr.Slider(visible=True), None, None], outputs=[opinion, year, year, drop, op_level], ) if __name__ == "__main__": demo.launch()