Rami Nasser
judge list new model
8fbc997
raw
history blame
1.11 kB
from .cleaning import remove_citations, split_data, split_text, chunk_data
import pandas as pd
import numpy as np
import json
with open("utils/id2label.json", "r") as j:
id2label = json.loads(j.read())
with open("utils/label2id.json", "r") as j:
label2id = json.loads(j.read())
def normaliz_dict(d, target=1.0):
raw = sum(d.values())
factor = target / raw
return {key: value * factor for key, value in d.items()}
def average_text(text, model, judges):
result = model(text)
new_res = []
for d in result:
p = {}
for dicts in d:
if dicts["label"] in judges:
p[dicts["label"]] = dicts["score"]
p = normaliz_dict(p)
new_res.append(p)
pred = {}
for c in new_res:
for k, v in c.items():
if k not in pred:
pred[k] = [round(v, 2)]
else:
pred[k].append(round(v, 2))
sumary = {k: round(sum(v) / len(v), 2) for k, v in pred.items()}
sumary = normaliz_dict(sumary)
return dict(sorted(sumary.items(), key=lambda x: x[1], reverse=True)), new_res