Spaces:
Runtime error
Runtime error
import subprocess | |
import sys | |
import re | |
import pandas as pd | |
try: | |
import eyecite | |
except ImportError: | |
subprocess.check_call([sys.executable, "-m", "pip", "install", "eyecite"]) | |
finally: | |
from eyecite import find, clean | |
# @title | |
def full_case(citation, text): | |
text = text.replace(citation.matched_text(), "") | |
if citation.metadata.year: | |
pattern = r"\([^)]*{}\)".format( | |
citation.metadata.year | |
) # Matches any word that ends with "year" | |
text = re.sub(pattern, "", text) | |
if citation.metadata.pin_cite: | |
text = text.replace(citation.metadata.pin_cite, "") | |
if citation.metadata.parenthetical: | |
text = text.replace(f"({citation.metadata.parenthetical})", "") | |
if citation.metadata.plaintiff: | |
text = text.replace( | |
f"{citation.metadata.plaintiff} v. {citation.metadata.defendant}", "" | |
) | |
publisher_date = " ".join( | |
i for i in (citation.metadata.court, citation.metadata.year) if i | |
) | |
if publisher_date: | |
text = text.replace(f"{publisher_date}", "") | |
if citation.metadata.extra: | |
text = text.replace(citation.metadata.extra, "") | |
return text | |
def supra_case(citation, text): | |
text = text.replace(citation.matched_text(), "") | |
if citation.metadata.pin_cite: | |
text = text.replace(citation.metadata.pin_cite, "") | |
if citation.metadata.parenthetical: | |
text = text.replace(f"({citation.metadata.parenthetical})", "") | |
if citation.metadata.antecedent_guess: | |
text = text.replace(citation.metadata.antecedent_guess, "") | |
return text | |
def short_case(citation, text): | |
text = text.replace(citation.matched_text(), "") | |
if citation.metadata.parenthetical: | |
text = text.replace(f"({citation.metadata.parenthetical})", "") | |
if citation.metadata.year: | |
pattern = r"\([^)]*{}\)".format(citation.metadata.year) | |
if citation.metadata.antecedent_guess: | |
text = text.replace(citation.metadata.antecedent_guess, "") | |
return text | |
def id_case(citation, text): | |
text = text.replace(citation.matched_text(), "") | |
if citation.metadata.parenthetical: | |
text = text.replace(f"({citation.metadata.parenthetical})", "") | |
if citation.metadata.pin_cite: | |
text = text.replace(citation.metadata.pin_cite, "") | |
return text | |
def unknown_case(citation, text): | |
text = text.replace(citation.matched_text(), "") | |
if citation.metadata.parenthetical: | |
text = text.replace(f"({citation.metadata.parenthetical})", "") | |
return text | |
def full_law_case(citation, text): | |
text = text.replace(citation.matched_text(), "") | |
if citation.metadata.parenthetical: | |
text = text.replace(f"({citation.metadata.parenthetical})", "") | |
return text | |
def full_journal_case(citation, text): | |
text = text.replace(citation.matched_text(), "") | |
if citation.metadata.year: | |
pattern = r"\([^)]*{}\)".format( | |
citation.metadata.year | |
) # Matches any word that ends with "year" | |
text = re.sub(pattern, "", text) | |
if citation.metadata.pin_cite: | |
text = text.replace(citation.metadata.pin_cite, "") | |
if citation.metadata.parenthetical: | |
text = text.replace(f"({citation.metadata.parenthetical})", "") | |
return text | |
def all_commas(text: str) -> str: | |
return re.sub(r"\,+", ",", text) | |
def all_dots(text: str) -> str: | |
return re.sub(r"\.+", ".", text) | |
functions_dict = { | |
"FullCaseCitation": full_case, | |
"SupraCitation": supra_case, | |
"ShortCaseCitation": short_case, | |
"IdCitation": id_case, | |
"UnknownCitation": unknown_case, | |
"FullLawCitation": full_law_case, | |
"FullJournalCitation": full_journal_case, | |
} | |
# @title | |
def remove_citations(input_text): | |
# clean text | |
plain_text = clean.clean_text( | |
input_text, ["html", "inline_whitespace", "underscores"] | |
) | |
# remove citations | |
found_citations = find.get_citations(plain_text) | |
for citation in found_citations: | |
plain_text = functions_dict[citation.__class__.__name__](citation, plain_text) | |
# clean text | |
plain_text = clean.clean_text( | |
plain_text, | |
["inline_whitespace", "underscores", "all_whitespace", all_commas, all_dots], | |
) | |
plain_text = clean.clean_text(plain_text, ["inline_whitespace", "all_whitespace"]) | |
pattern = r"\*?\d*\s*I+\n" | |
plain_text = re.sub(pattern, "", plain_text) | |
pattern = r"\s[,.]" | |
plain_text = re.sub(pattern, "", plain_text) | |
return plain_text | |
def split_text(text): | |
words = text.split() | |
chunks = [] | |
for i in range(0, len(words), 420): | |
chunks.append(" ".join(words[i : i + 430])) | |
return chunks | |
# @title | |
def chunk_text_to_paragraphs(text): | |
paragraphs = text.split("\n") # Split by empty line | |
# Remove leading and trailing whitespace from each paragraph | |
paragraphs = [p.strip() for p in paragraphs] | |
return paragraphs | |
# @title | |
def split_data(data, id2label, label2id): | |
data_dict = { | |
"author_name": [], | |
"label": [], | |
"category": [], | |
"case_name": [], | |
"url": [], | |
"text": [], | |
} | |
opinions_split = pd.DataFrame(data_dict) | |
opinions_split["label"] = opinions_split["label"].astype(int) | |
for index, row in data.iterrows(): | |
# chunks = chunk_text_to_paragraphs(row['text']) | |
chunks = split_text(row["clean_text"]) | |
for chunk in chunks: | |
if len(chunk) < 1000: | |
continue | |
tmp = pd.DataFrame( | |
{ | |
"author_name": row["author_name"], | |
"label": [label2id[row["author_name"]]], | |
"category": row["category"], | |
"case_name": row["case_name"], | |
"url": [row["absolute_url"]], | |
"text": [chunk], | |
} | |
) | |
opinions_split = pd.concat([opinions_split, tmp]) | |
return opinions_split | |
def chunk_data(data): | |
data_dict = {"text": []} | |
opinions_split = pd.DataFrame(data_dict) | |
chunks = split_text(data) | |
for chunk in chunks: | |
# if len(chunk) < 1000: | |
# continue | |
tmp = pd.DataFrame({"label": [200], "text": [chunk]}) | |
opinions_split = pd.concat([opinions_split, tmp]) | |
return opinions_split | |