import subprocess import sys import re import pandas as pd try: import eyecite except ImportError: subprocess.check_call([sys.executable, "-m", "pip", "install", 'eyecite']) finally: from eyecite import find, clean # @title def full_case(citation, text): text = text.replace(citation.matched_text(), "") if citation.metadata.year: pattern = r'\([^)]*{}\)'.format(citation.metadata.year) # Matches any word that ends with "year" text = re.sub(pattern, '', text) if citation.metadata.pin_cite: text = text.replace(citation.metadata.pin_cite, "") if citation.metadata.parenthetical: text = text.replace(f"({citation.metadata.parenthetical})", "") if citation.metadata.plaintiff: text = text.replace(f"{citation.metadata.plaintiff} v. {citation.metadata.defendant}", "") publisher_date = " ".join(i for i in (citation.metadata.court, citation.metadata.year) if i) if publisher_date: text = text.replace(f"{publisher_date}", "") if citation.metadata.extra: text = text.replace(citation.metadata.extra, "") return text def supra_case(citation, text): text = text.replace(citation.matched_text(), "") if citation.metadata.pin_cite: text = text.replace(citation.metadata.pin_cite, "") if citation.metadata.parenthetical: text = text.replace(f"({citation.metadata.parenthetical})", "") if citation.metadata.antecedent_guess: text = text.replace(citation.metadata.antecedent_guess, "") return text def short_case(citation, text): text = text.replace(citation.matched_text(), "") if citation.metadata.parenthetical: text = text.replace(f"({citation.metadata.parenthetical})", "") if citation.metadata.year: pattern = r'\([^)]*{}\)'.format(citation.metadata.year) if citation.metadata.antecedent_guess: text = text.replace(citation.metadata.antecedent_guess, "") return text def id_case(citation, text): text = text.replace(citation.matched_text(), "") if citation.metadata.parenthetical: text = text.replace(f"({citation.metadata.parenthetical})", "") if citation.metadata.pin_cite: text = text.replace(citation.metadata.pin_cite, "") return text def unknown_case(citation, text): text = text.replace(citation.matched_text(), "") if citation.metadata.parenthetical: text = text.replace(f"({citation.metadata.parenthetical})", "") return text def full_law_case(citation, text): text = text.replace(citation.matched_text(), "") if citation.metadata.parenthetical: text = text.replace(f"({citation.metadata.parenthetical})", "") return text def full_journal_case(citation, text): text = text.replace(citation.matched_text(), "") if citation.metadata.year: pattern = r'\([^)]*{}\)'.format(citation.metadata.year) # Matches any word that ends with "year" text = re.sub(pattern, '', text) if citation.metadata.pin_cite: text = text.replace(citation.metadata.pin_cite, "") if citation.metadata.parenthetical: text = text.replace(f"({citation.metadata.parenthetical})", "") return text def all_commas(text: str) -> str: return re.sub(r"\,+", ",", text) def all_dots(text: str) -> str: return re.sub(r"\.+", ".", text) functions_dict = { 'FullCaseCitation': full_case, 'SupraCitation': supra_case, 'ShortCaseCitation': short_case, 'IdCitation': id_case, 'UnknownCitation': unknown_case, 'FullLawCitation': full_law_case, 'FullJournalCitation': full_journal_case, } # @title def remove_citations(input_text): #clean text plain_text = clean.clean_text(input_text, ['html', 'inline_whitespace', 'underscores']) #remove citations found_citations = find.get_citations(plain_text) for citation in found_citations: plain_text = functions_dict[citation.__class__.__name__](citation, plain_text) #clean text plain_text = clean.clean_text(plain_text, ['inline_whitespace', 'underscores','all_whitespace', all_commas, all_dots]) plain_text = clean.clean_text(plain_text, ['inline_whitespace','all_whitespace']) pattern = r"\*?\d*\s*I+\n" plain_text = re.sub(pattern, '', plain_text) pattern = r"\s[,.]" plain_text = re.sub(pattern, '', plain_text) return plain_text def split_text(text): words = text.split() chunks = [] for i in range(0, len(words), 420): chunks.append(' '.join(words[i:i+430])) return chunks # @title def chunk_text_to_paragraphs(text): paragraphs = text.split("\n") # Split by empty line # Remove leading and trailing whitespace from each paragraph paragraphs = [p.strip() for p in paragraphs] return paragraphs # @title def split_data(data, id2label, label2id): data_dict = {'author_name': [], 'label': [], 'category': [], 'case_name': [], 'url': [], 'text': []} opinions_split = pd.DataFrame(data_dict) opinions_split['label'] = opinions_split['label'].astype(int) for index, row in data.iterrows(): # chunks = chunk_text_to_paragraphs(row['text']) chunks = split_text(row['clean_text']) for chunk in chunks: if len(chunk)<1000: continue tmp = pd.DataFrame({'author_name': row['author_name'],'label': [label2id[row['author_name']]], 'category': row['category'],'case_name': row['case_name'], 'url': [row['absolute_url']], 'text': [chunk]}) opinions_split = pd.concat([opinions_split, tmp]) return opinions_split def chunk_data(data): data_dict = {'text': []} opinions_split = pd.DataFrame(data_dict) chunks = split_text(data) for chunk in chunks: if len(chunk)<1000: continue tmp = pd.DataFrame({'label': [200],'text': [chunk]}) opinions_split = pd.concat([opinions_split, tmp]) return opinions_split