Update rag_pipeline.py
Browse files- rag_pipeline.py +3 -4
rag_pipeline.py
CHANGED
@@ -2,18 +2,17 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
2 |
from sentence_transformers import SentenceTransformer, models
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
-
import time
|
6 |
|
7 |
class RAGPipeline:
|
8 |
def __init__(self):
|
9 |
-
print("[RAG] تحميل
|
10 |
|
11 |
word_embedding_model = models.Transformer('asafaya/bert-base-arabic')
|
12 |
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
|
13 |
self.embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
|
14 |
|
15 |
-
self.tokenizer = AutoTokenizer.from_pretrained("google/
|
16 |
-
self.model = AutoModelForSeq2SeqLM.from_pretrained("google/
|
17 |
|
18 |
self.index = None
|
19 |
self.chunks = []
|
|
|
2 |
from sentence_transformers import SentenceTransformer, models
|
3 |
import numpy as np
|
4 |
import torch
|
|
|
5 |
|
6 |
class RAGPipeline:
|
7 |
def __init__(self):
|
8 |
+
print("[RAG] تحميل النماذج...")
|
9 |
|
10 |
word_embedding_model = models.Transformer('asafaya/bert-base-arabic')
|
11 |
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
|
12 |
self.embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
|
13 |
|
14 |
+
self.tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
|
15 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
|
16 |
|
17 |
self.index = None
|
18 |
self.chunks = []
|