Spaces:
Paused
Paused
File size: 6,757 Bytes
59812f5 27afe77 297485e 141ba59 c86c2f3 05d7fa9 c86c2f3 d2d3f64 ed082d8 0f4b183 7b05a12 c86c2f3 297485e 4522cd0 b6c1812 59812f5 4522cd0 f6ad798 e6dd388 cd39df4 96cee4f e6dd388 50a1316 297485e c86c2f3 09b3f75 c86c2f3 4656d45 59ab948 4656d45 1827259 ffb8571 05d7fa9 297485e 3856850 f2e0653 6344212 297485e 01c9b0c 6759086 70b5b53 d5a5941 70b5b53 d57d629 70b5b53 d57d629 70b5b53 d57d629 1e69bad 7b05a12 3a61bf2 7b05a12 d2d3f64 4522cd0 c86c2f3 776bd38 297485e 2db8be7 297485e 2db8be7 85862c6 141ba59 7b05a12 776bd38 4656d45 54995d2 6bc8e25 4656d45 1e69bad 141ba59 c86c2f3 141ba59 4656d45 1e69bad f6ff388 4c4df5c 1e69bad ce9212e 1e69bad db22f97 ffb8571 db22f97 c86c2f3 ce9212e 1e69bad ce9212e 6e6ce93 0f4b183 2c93363 0f4b183 297485e 1661753 0f4b183 616dabc 0f4b183 1827259 297485e 709a0c6 81e2d36 0f4b183 e6dd388 616dabc 297485e 89f9579 cd39df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import os
import re
import torch
from threading import Thread
from typing import Iterator
from mongoengine import connect, Document, StringField, SequenceField
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
from peft import PeftModel
import requests
# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 700
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
# Description and License Texts
DESCRIPTION = """
# ✨Storytell AI🧑🏽💻
Welcome to the **Storytell AI** space, crafted with care by Ranam & George. Dive into the world of educational storytelling with our model. This iteration of the Llama 2 model with 7 billion parameters is fine-tuned to generate educational stories that engage and educate. Enjoy a journey of discovery and creativity—your storytelling lesson begins here! You can prompt this model to explain any computer science concept. **Please check the examples below**.
"""
LICENSE = """
---
As a derivative work of [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""
# GPU Check and add CPU warning
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
# Model and Tokenizer Configuration
model_id = "meta-llama/Llama-2-7b-hf"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=False,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
base_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", quantization_config=bnb_config)
model = PeftModel.from_pretrained(base_model, "ranamhamoud/storytell")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
# # MongoDB Connection
# PASSWORD = os.environ.get("MONGO_PASS")
# connect(host=f"mongodb+srv://ranamhammoud11:{PASSWORD}@stories.zf5v52a.mongodb.net/")
# # MongoDB Document
# class Story(Document):
# message = StringField()
# content = StringField()
# story_id = SequenceField(primary_key=True)
# Utility function for prompts
def make_prompt(entry):
return f"### Human, Don't answer inappropriate messages. Don't use ;:{entry}. Use characters I include. ### Assistant:"
# f"TELL A STORY, RELATE TO COMPUTER SCIENCE, INCLUDE ASSESMENTS. MAKE IT REALISTIC AND AROUND 500 WORDS, END THE STORY WITH "THE END.": {entry}"
def process_text(text):
print("Original text:", text) # Debug initial input
parts = text.split('[')
print("Parts after splitting on '[':", parts) # Debug splitting on '['
clean_parts = []
for part in parts:
sub_parts = part.split(']')
print("Sub-parts after splitting on ']':", sub_parts) # Debug splitting on ']'
if len(sub_parts) > 1:
clean_parts.append(sub_parts[1])
else:
clean_parts.append(sub_parts[0])
cleaned_text = ''.join(clean_parts)
print("Text after removing bracketed content:", cleaned_text) # Debug text after removing brackets
cleaned_text = re.sub(r'assessment;', '', cleaned_text)
print("Final text after removing 'assessment;':", cleaned_text) # Debug final cleaning step
return cleaned_text
def contains_profanity(text, profanity_set):
words = text.split()
return any(word.lower() in profanity_set for word in words)
response = requests.get('https://raw.githubusercontent.com/ranamkhamoud/profanity/main/profanity.txt')
bad_words = set(response.text.splitlines())
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.8,
top_p: float = 0.7,
top_k: int = 30,
repetition_penalty: float = 1.0,
) -> Iterator[str]:
if contains_profanity(message, bad_words):
yield "I'm sorry, but I can't process your request due to inappropriate content."
return
conversation = []
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": make_prompt(message)})
enc = tokenizer(make_prompt(message), return_tensors="pt", padding=True, truncation=True)
input_ids = enc.input_ids.to(model.device)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=False)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
processed_text = process_text(text)
outputs.append(processed_text)
output = "".join(outputs)
yield output
final_story = "".join(outputs)
# Remove the last sentence
final_story_trimmed = remove_last_sentence(final_story)
try:
# saved_story = Story(message=message, content=final_story_trimmed).save()
yield f"{final_story_trimmed}"
except Exception as e:
yield f"Failed to save story: {str(e)}"
def remove_last_sentence(text):
# Assuming sentences end with a period followed by space or end of string
sentences = re.split(r'(?<=\.)\s', text)
return ' '.join(sentences[:-1]) if sentences else text
# Gradio Interface Setp
chat_interface = gr.ChatInterface(
fn=generate,
fill_height=True,
stop_btn=None,
examples=[
["Can you explain briefly to me what is the Python programming language?"],
["Could you please provide an explanation about the concept of recursion?"],
["Could you explain what a URL is?"]
],
theme='shivi/calm_seafoam'
)
# Gradio Web Interface
with gr.Blocks(css="style.css",theme='nuttea/Softblue',fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
gr.Markdown(LICENSE)
# Main Execution
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch(share=True) |