File size: 6,757 Bytes
59812f5
27afe77
297485e
141ba59
c86c2f3
05d7fa9
c86c2f3
d2d3f64
ed082d8
0f4b183
7b05a12
c86c2f3
297485e
4522cd0
b6c1812
59812f5
4522cd0
f6ad798
 
 
 
 
e6dd388
 
cd39df4
96cee4f
e6dd388
50a1316
297485e
c86c2f3
09b3f75
c86c2f3
4656d45
59ab948
4656d45
 
 
 
 
 
 
 
 
 
1827259
ffb8571
 
 
 
 
 
 
 
 
05d7fa9
297485e
 
3856850
f2e0653
6344212
297485e
01c9b0c
6759086
70b5b53
d5a5941
70b5b53
d57d629
 
 
70b5b53
d57d629
 
 
 
70b5b53
 
 
 
d57d629
1e69bad
7b05a12
 
 
 
3a61bf2
7b05a12
 
d2d3f64
4522cd0
c86c2f3
776bd38
297485e
2db8be7
297485e
2db8be7
85862c6
141ba59
7b05a12
 
 
776bd38
4656d45
 
 
 
 
54995d2
 
6bc8e25
4656d45
 
1e69bad
 
 
 
 
 
 
 
 
 
 
141ba59
 
c86c2f3
141ba59
 
4656d45
1e69bad
 
 
f6ff388
4c4df5c
1e69bad
ce9212e
1e69bad
db22f97
ffb8571
 
db22f97
 
c86c2f3
ce9212e
1e69bad
ce9212e
 
 
 
6e6ce93
0f4b183
 
2c93363
0f4b183
 
 
297485e
1661753
0f4b183
616dabc
0f4b183
1827259
297485e
709a0c6
81e2d36
0f4b183
e6dd388
 
616dabc
297485e
89f9579
cd39df4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import re
import torch
from threading import Thread
from typing import Iterator
from mongoengine import connect, Document, StringField, SequenceField
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
from peft import PeftModel
import requests

# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 700
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

# Description and License Texts
DESCRIPTION = """
# ✨Storytell AI🧑🏽‍💻
Welcome to the **Storytell AI** space, crafted with care by Ranam & George. Dive into the world of educational storytelling with our model. This iteration of the Llama 2 model with 7 billion parameters is fine-tuned to generate educational stories that engage and educate. Enjoy a journey of discovery and creativity—your storytelling lesson begins here! You can prompt this model to explain any computer science concept. **Please check the examples below**. 
"""
LICENSE = """
---
As a derivative work of [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""

# GPU Check and add CPU warning
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

# Model and Tokenizer Configuration
model_id = "meta-llama/Llama-2-7b-hf"
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=False,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)
base_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", quantization_config=bnb_config)
model = PeftModel.from_pretrained(base_model, "ranamhamoud/storytell")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token

# # MongoDB Connection
# PASSWORD = os.environ.get("MONGO_PASS")
# connect(host=f"mongodb+srv://ranamhammoud11:{PASSWORD}@stories.zf5v52a.mongodb.net/")

# # MongoDB Document
# class Story(Document):
#     message = StringField()
#     content = StringField()
#     story_id = SequenceField(primary_key=True)
   

# Utility function for prompts
def make_prompt(entry):
    return  f"### Human, Don't answer inappropriate messages. Don't use ;:{entry}. Use characters I include. ### Assistant:"
    # f"TELL A STORY, RELATE TO COMPUTER SCIENCE, INCLUDE ASSESMENTS. MAKE IT REALISTIC AND AROUND 500 WORDS, END THE STORY WITH "THE END.": {entry}"


def process_text(text):
    print("Original text:", text)  # Debug initial input
    parts = text.split('[')
    print("Parts after splitting on '[':", parts)  # Debug splitting on '['
    clean_parts = []
    for part in parts:
        sub_parts = part.split(']')
        print("Sub-parts after splitting on ']':", sub_parts)  # Debug splitting on ']'
        if len(sub_parts) > 1:
            clean_parts.append(sub_parts[1])
        else:
            clean_parts.append(sub_parts[0])
    cleaned_text = ''.join(clean_parts)
    print("Text after removing bracketed content:", cleaned_text)  # Debug text after removing brackets
    cleaned_text = re.sub(r'assessment;', '', cleaned_text)
    print("Final text after removing 'assessment;':", cleaned_text)  # Debug final cleaning step
    return cleaned_text
    
def contains_profanity(text, profanity_set):
    words = text.split()
    return any(word.lower() in profanity_set for word in words) 

response = requests.get('https://raw.githubusercontent.com/ranamkhamoud/profanity/main/profanity.txt')
bad_words = set(response.text.splitlines())
    
@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
    temperature: float = 0.8,
    top_p: float = 0.7,
    top_k: int = 30,
    repetition_penalty: float = 1.0,
) -> Iterator[str]:
    if contains_profanity(message, bad_words):
        yield "I'm sorry, but I can't process your request due to inappropriate content."
        return
    conversation = []
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": make_prompt(message)})
    enc = tokenizer(make_prompt(message), return_tensors="pt", padding=True, truncation=True)
    input_ids = enc.input_ids.to(model.device)
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=False)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        processed_text = process_text(text)
        outputs.append(processed_text)
        output = "".join(outputs)
        yield output

    final_story = "".join(outputs)
    # Remove the last sentence
    final_story_trimmed = remove_last_sentence(final_story)

    try:
        # saved_story = Story(message=message, content=final_story_trimmed).save()
        yield f"{final_story_trimmed}"
    except Exception as e:
        yield f"Failed to save story: {str(e)}"

def remove_last_sentence(text):
    # Assuming sentences end with a period followed by space or end of string
    sentences = re.split(r'(?<=\.)\s', text)
    return ' '.join(sentences[:-1]) if sentences else text


# Gradio Interface Setp
chat_interface = gr.ChatInterface(
    fn=generate,
    fill_height=True,
    stop_btn=None,
    examples=[
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Could you please provide an explanation about the concept of recursion?"],
        ["Could you explain what a URL is?"]
    ],
    theme='shivi/calm_seafoam'
)

# Gradio Web Interface
with gr.Blocks(css="style.css",theme='nuttea/Softblue',fill_height=True) as demo:
    gr.Markdown(DESCRIPTION)
    chat_interface.render()
    gr.Markdown(LICENSE)


# Main Execution
if __name__ == "__main__":
    demo.queue(max_size=20)
    demo.launch(share=True)