Spaces:
Paused
Paused
File size: 4,866 Bytes
59812f5 141ba59 c86c2f3 db22f97 c86c2f3 d2d3f64 c86c2f3 0f4b183 c86c2f3 4522cd0 59812f5 4522cd0 141ba59 b5bcfdd 4522cd0 b5bcfdd e6dd388 d966909 e6dd388 1e1bdf2 c86c2f3 09b3f75 c86c2f3 1827259 141ba59 0f4b183 141ba59 0f4b183 f57704e 141ba59 64868e1 db22f97 bc37c1b db22f97 64868e1 3856850 4c4df5c 3856850 d2d3f64 4522cd0 c86c2f3 141ba59 4c4df5c 64868e1 141ba59 3856850 141ba59 64868e1 54995d2 6bc8e25 54995d2 141ba59 54995d2 141ba59 64868e1 141ba59 c86c2f3 141ba59 4c4df5c db22f97 2d42a30 db22f97 c86c2f3 0f4b183 2d42a30 0f4b183 1827259 141ba59 0f4b183 1e1bdf2 e6dd388 89f9579 1e1bdf2 2d42a30 0f4b183 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import os
from threading import Thread
from typing import Iterator
from mongoengine import connect, Document, StringField, SequenceField
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
from peft import PeftModel
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Storytell AI
Welcome to the Storytell AI space, crafted with care by Ranam & George. Dive into the world of educational storytelling with our [Storytell](https://huggingface.co/ranamhamoud/storytell) model. This iteration of the Llama 2 model with 7 billion parameters is fine-tuned to generate educational stories that engage and educate. Enjoy a journey of discovery and creativity—your storytelling lesson begins here!
"""
LICENSE = """
<p/>
---
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""
EXAMPLES = """
<p/>
---
Keep in mind that the examples are cached.
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
bnb_config = BitsAndBytesConfig(
load_in_8bit=True,
bnb_4bit_compute_dtype=torch.float16,
)
model_id = "meta-llama/Llama-2-7b-chat-hf"
base_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",quantization_config=bnb_config)
model = PeftModel.from_pretrained(base_model,"ranamhamoud/storytell")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
PASSWORD = os.environ.get("MONGODB_PASS")
connect(host='mongodb+srv://ranamhammoud11:[email protected]/')
class Story(Document):
message = StringField()
content = StringField()
story_id = SequenceField(primary_key=True)
def make_prompt(entry):
return f"### Human: YOUR INSTRUCTION HERE,ALWAYS USE A STORY,INCLUDE ASSESMENTS THROUGHOUT AND A TECHNICAL SUMMARY: {entry} ### Assistant:"
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.3, # Lower -> less random
top_p: float = 0.1, # Lower -> less random, considering only the top 10% of tokens at each step
top_k: int = 1, # Least random, only the most likely next token is considered
repetition_penalty: float = 1.0, # No repetition penalty
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": make_prompt(message)})
enc = tokenizer(make_prompt(message), return_tensors="pt", padding=True, truncation=True)
input_ids = enc.input_ids
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
final_story = "".join(outputs)
try:
saved_story = Story(message=message, content=final_story).save()
yield f"Story saved with ID: {saved_story.story_id}\n\n{final_story}"
except Exception as e:
yield f"Failed to save story: {str(e)}"
chat_interface = gr.ChatInterface(
fn=generate,
stop_btn=None,
examples=[
["Can you explain briefly to me what is the Python programming language?"],
["Could you please provide an explanation about the concept of recursion?"],
["Tell me more about Stacks."]
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
gr.Markdown(EXAMPLES)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch(share=True)
|