File size: 5,442 Bytes
b75125a
 
297485e
841e4af
b75125a
 
841e4af
b75125a
 
 
c86c2f3
297485e
b75125a
4d5d8af
b75125a
4522cd0
b75125a
 
 
 
 
841e4af
4d5d8af
b75125a
 
841e4af
4d5d8af
 
 
 
 
 
 
 
 
 
 
 
 
 
b75125a
4d5d8af
 
 
c2b7b7c
4d5d8af
 
 
 
 
b75125a
4d5d8af
b75125a
 
4d5d8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b75125a
4d5d8af
b75125a
 
 
 
4d5d8af
 
 
 
 
b75125a
9905ae2
 
 
4d5d8af
469c0f9
4d5d8af
841e4af
 
 
4d5d8af
 
b75125a
 
 
 
 
4d5d8af
 
 
 
 
b75125a
 
841e4af
f6ff388
b75125a
 
4d5d8af
 
 
 
 
 
 
 
 
 
 
e6dd388
b75125a
 
 
 
 
 
 
 
 
 
 
 
f317c15
b75125a
4d5d8af
b75125a
4d5d8af
f317c15
616dabc
b75125a
 
 
4d5d8af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import re
import torch
from threading import Thread
from typing import Iterator
from mongoengine import connect, Document, StringField, SequenceField
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
from peft import PeftModel

# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

LICENSE = """
---
As a derivative work of [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""

# GPU Check and add CPU warning
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU ๐Ÿฅถ This demo does not work on CPU.</p>"

if torch.cuda.is_available():

# Model and Tokenizer Configuration
model_id = "meta-llama/Llama-2-7b-chat-hf"
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=False,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)
base_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", quantization_config=bnb_config)
model = PeftModel.from_pretrained(base_model, "ranamhamoud/storytell")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token

# # MongoDB Connection
# PASSWORD = os.environ.get("MONGO_PASS")
# connect(host=f"mongodb+srv://ranamhammoud11:{PASSWORD}@stories.zf5v52a.mongodb.net/")

# # MongoDB Document
# class Story(Document):
#     message = StringField()
#     content = StringField()
#     story_id = SequenceField(primary_key=True)

# Utility function for prompts
def make_prompt(entry):
    return  f"### Human: Don't repeat the assesments, limit to 500 words {entry} ### Assistant:"
    # f"TELL A STORY, RELATE TO COMPUTER SCIENCE, INCLUDE ASSESMENTS. MAKE IT REALISTIC AND AROUND 800 WORDS, END THE STORY WITH "THE END.": {entry}"

def process_text(text):
    # First, handle the specific case for [answer:]
    # This replaces [answer:] with "Answer:" and keeps the content after it on the same line.
    text = re.sub(r'\[answer:\]\s*', 'Answer: ', text)
    
    # Now, remove all other content within brackets.
    # This regex looks for square brackets and any content inside them, excluding those that start with "Answer: " already modified.
    text = re.sub(r'\[.*?\](?<!Answer: )', '', text)
    
    return text
custom_css = """
body, input, button, textarea, label {
    font-family: Arial, sans-serif;
    font-size: 24px;
}
.gr-chat-interface .gr-chat-message-container {
    font-size: 14px;
}
.gr-button {
    font-size: 14px;
    padding: 12px 24px;
}
.gr-input {
    font-size: 14px;
}
"""

# Gradio Function
@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
    temperature: float = 0.6,
    top_p: float = 0.7,
    top_k: int = 20,
    repetition_penalty: float = 1.0,
) -> Iterator[str]:
    conversation = []
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": make_prompt(message)})
    enc = tokenizer(make_prompt(message), return_tensors="pt", padding=True, truncation=True)
    input_ids = enc.input_ids.to(model.device)
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=False)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        processed_text = process_text(text)
        outputs.append(processed_text)
        output = "".join(outputs)
        yield output

    # final_story = "".join(outputs)
    # try:
    #     saved_story = Story(message=message, content=final_story).save()
    #     yield f"{final_story}\n\n Story saved with ID: {saved_story.story_id}"
    # except Exception as e:
    #     yield f"Failed to save story: {str(e)}"

# Gradio Interface Setup
chat_interface = gr.ChatInterface(
    fn=generate,
    fill_height=True,
    stop_btn=None,
    examples=[
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Could you please provide an explanation about the concept of recursion?"],
        ["Could you explain what a URL is?"]
    ],
    theme='shivi/calm_seafoam'
)

# Gradio Web Interface
with gr.Blocks(css=custom_css,theme='shivi/calm_seafoam',fill_height=True) as demo:
    chat_interface.render()
    # gr.Markdown(LICENSE)


# Main Execution
if __name__ == "__main__":
    demo.queue(max_size=20)
    demo.launch(share=True)