File size: 4,542 Bytes
b75125a
 
297485e
841e4af
b75125a
 
841e4af
b75125a
 
 
c86c2f3
297485e
b75125a
f317c15
b75125a
4522cd0
b75125a
 
 
 
 
841e4af
b75125a
 
841e4af
b75125a
 
 
 
 
 
 
841e4af
b75125a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
841e4af
b75125a
 
 
 
 
 
 
 
 
841e4af
1827259
841e4af
 
 
b75125a
f317c15
b75125a
 
 
 
 
 
 
 
 
 
 
 
 
841e4af
f6ff388
b75125a
 
 
 
e6dd388
b75125a
 
 
bda6d90
b75125a
 
 
 
 
 
 
 
 
f317c15
b75125a
 
 
 
 
f317c15
616dabc
b75125a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import re
import torch
from threading import Thread
from typing import Iterator
from mongoengine import connect, Document, StringField, SequenceField
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
from peft import PeftModel

# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 930
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

LICENSE = """
---
As a derivative work of [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU ๐Ÿฅถ This demo does not work on CPU.</p>"

if  torch.cuda.is_available():
    modelA_id = "meta-llama/Llama-2-7b-chat-hf"
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_use_double_quant=False,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16
    )
    base_model = AutoModelForCausalLM.from_pretrained(modelA_id, device_map="auto", quantization_config=bnb_config)
    modelA = PeftModel.from_pretrained(base_model, "ranamhamoud/storytell")
    tokenizerA = AutoTokenizer.from_pretrained(modelA_id)
    tokenizerA.pad_token = tokenizerA.eos_token

    modelB_id = "meta-llama/Llama-2-7b-chat-hf"
    modelB = AutoModelForCausalLM.from_pretrained(modelB_id, torch_dtype=torch.float16, device_map="auto")
    tokenizerB = AutoTokenizer.from_pretrained(modelB_id)
    tokenizerB.use_default_system_prompt = False

def make_prompt(entry):
    return  f"### Human: Don't repeat the assesments, limit to 500 words {entry} ### Assistant:"

@spaces.GPU
def generate(
    model: str,
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    if model == "A":
        model = modelA
        tokenizer = tokenizerA
        enc = tokenizer(make_prompt(message), return_tensors="pt", padding=True, truncation=True)
        input_ids = enc.input_ids.to(model.device)

    else:
        model = modelB
        tokenizer = tokenizerB
        input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

# Gradio Interface Setup
chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[gr.Dropdown("Model", ["A", "B"],label="Animal", info="Will add more animals later!")],
    fill_height=True,
    stop_btn=None,
    examples=[
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Could you please provide an explanation about the concept of recursion?"],
        ["Could you explain what a URL is?"]
    ],
    theme='shivi/calm_seafoam'
)

# Gradio Web Interface
with gr.Blocks(theme='shivi/calm_seafoam',fill_height=True) as demo:
    # gr.Markdown(DESCRIPTION)
    chat_interface.render()
    gr.Markdown(LICENSE)


# Main Execution
if __name__ == "__main__":
    demo.queue(max_size=20)
    demo.launch(share=True)