File size: 6,056 Bytes
b75125a
 
297485e
841e4af
b75125a
 
841e4af
b75125a
 
 
e3f86b5
 
 
2999a82
e3f86b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c86c2f3
297485e
b75125a
4d5d8af
b75125a
4522cd0
b75125a
 
 
 
 
841e4af
4d5d8af
b75125a
 
841e4af
4d5d8af
 
89044b5
 
 
 
 
 
 
 
 
 
 
 
b75125a
4d5d8af
 
 
c2b7b7c
4d5d8af
 
 
 
 
b75125a
4d5d8af
b75125a
6caf62f
4d5d8af
 
 
2a727f4
4d5d8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b75125a
4d5d8af
b75125a
 
 
 
4d5d8af
 
 
 
 
b75125a
9905ae2
 
 
4d5d8af
469c0f9
4d5d8af
841e4af
 
 
4d5d8af
 
b75125a
 
 
 
 
4d5d8af
 
 
 
 
b75125a
 
841e4af
f6ff388
b75125a
 
4d5d8af
 
 
 
 
e3f86b5
 
4d5d8af
 
 
 
 
e3f86b5
e6dd388
2a727f4
b75125a
 
 
 
 
 
 
 
 
2a727f4
b75125a
f317c15
b75125a
4d5d8af
2a727f4
4d5d8af
f317c15
2a727f4
b75125a
 
 
4d5d8af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import re
import torch
from threading import Thread
from typing import Iterator
from mongoengine import connect, Document, StringField, SequenceField
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
from peft import PeftModel
from openai import OpenAI


openai_key = os.environ.get("OPENAI_KEY")

def generate_image(text):
    try:
        client = OpenAI(api_key=openai_key)

        response = client.images.generate(
            model="dall-e-3",
            prompt="Create an illustration that accurately depicts the character and the setting of this story:"+text,
            n=1,
            size="1024x1024"
        )
    except Exception as error:
        print(str(error))
        raise gr.Error("An error occurred while generating speech. Please check your API key and come back try again.")

    return response.data[0].url
    

# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

LICENSE = """
---
As a derivative work of [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""

# GPU Check and add CPU warning
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU ๐Ÿฅถ This demo does not work on CPU.</p>"

if torch.cuda.is_available():

    # Model and Tokenizer Configuration
    model_id = "meta-llama/Llama-2-7b-chat-hf"
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_use_double_quant=False,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16
    )
    base_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", quantization_config=bnb_config)
    model = PeftModel.from_pretrained(base_model, "ranamhamoud/storytell")
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.pad_token = tokenizer.eos_token

# # MongoDB Connection
# PASSWORD = os.environ.get("MONGO_PASS")
# connect(host=f"mongodb+srv://ranamhammoud11:{PASSWORD}@stories.zf5v52a.mongodb.net/")

# # MongoDB Document
# class Story(Document):
#     message = StringField()
#     content = StringField()
#     story_id = SequenceField(primary_key=True)

# Utility function for prompts
def make_prompt(entry):
    return  f"### Human: When asked to explain use a story.Don't repeat the assesments, limit to 500 words.However keep context in mind if edits to the content is required. {entry} ### Assistant:"
    # f"TELL A STORY, RELATE TO COMPUTER SCIENCE, INCLUDE ASSESMENTS. MAKE IT REALISTIC AND AROUND 800 WORDS, END THE STORY WITH "THE END.": {entry}"

def process_text(text):

    text = re.sub(r'\[answer:\]\s*', 'Answer: ', text)
    text = re.sub(r'\[.*?\](?<!Answer: )', '', text)
    
    return text
custom_css = """
body, input, button, textarea, label {
    font-family: Arial, sans-serif;
    font-size: 24px;
}
.gr-chat-interface .gr-chat-message-container {
    font-size: 14px;
}
.gr-button {
    font-size: 14px;
    padding: 12px 24px;
}
.gr-input {
    font-size: 14px;
}
"""

# Gradio Function
@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
    temperature: float = 0.6,
    top_p: float = 0.7,
    top_k: int = 20,
    repetition_penalty: float = 1.0,
) -> Iterator[str]:
    conversation = []
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": make_prompt(message)})
    enc = tokenizer(make_prompt(message), return_tensors="pt", padding=True, truncation=True)
    input_ids = enc.input_ids.to(model.device)
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=False)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        processed_text = process_text(text)
        outputs.append(processed_text)
        output = "".join(outputs)
        yield output

    final_story = "".join(outputs)
    generate_image(final_story)
    # try:
    #     saved_story = Story(message=message, content=final_story).save()
    #     yield f"{final_story}\n\n Story saved with ID: {saved_story.story_id}"
    # except Exception as e:
    #     yield f"Failed to save story: {str(e)}"
    

chatbot=gr.Chatbot([(None, ("https://img.freepik.com/free-photo/painting-mountain-lake-with-mountain-background_188544-9126.jpg",))])
chat_interface = gr.ChatInterface(
    fn=generate,
    fill_height=True,
    stop_btn=None,
    examples=[
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Could you please provide an explanation about the concept of recursion?"],
        ["Could you explain what a URL is?"]
    ],
    theme='shivi/calm_seafoam',autofocus=True, chatbot=chatbot
)

# Gradio Web Interface
with gr.Blocks(css=custom_css,theme='shivi/calm_seafoam',fill_height=True) as demo:
        chat_interface.render()
    # gr.Markdown(LICENSE)

        
# Main Execution
if __name__ == "__main__":
    demo.queue(max_size=20)
    demo.launch(share=True)