import os from threading import Thread from typing import Iterator from mongoengine import connect, Document, StringField, SequenceField import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig from peft import PeftModel MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # ✨Storytell AI🧑🏽‍💻 Welcome to the **Storytell AI** space, crafted with care by Ranam & George. Dive into the world of educational storytelling with our [Storytell](https://huggingface.co/ranamhamoud/storytell) model. This iteration of the Llama 2 model with 7 billion parameters is fine-tuned to generate educational stories that engage and educate. Enjoy a journey of discovery and creativity—your storytelling lesson begins here! """ LICENSE = """

--- As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md). """ if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" if torch.cuda.is_available(): bnb_config = BitsAndBytesConfig( load_in_8bit=True, bnb_4bit_compute_dtype=torch.float16, ) model_id = "meta-llama/Llama-2-7b-chat-hf" base_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",quantization_config=bnb_config) model = PeftModel.from_pretrained(base_model,"ranamhamoud/storytell") tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token PASSWORD = os.environ.get("MONGO_PASS") connect(host = f"mongodb+srv://ranamhammoud11:{PASSWORD}@stories.zf5v52a.mongodb.net/") class Story(Document): message = StringField() content = StringField() story_id = SequenceField(primary_key=True) def make_prompt(entry): return f"### Human:YOUR INSTRUCTION HERE,ALWAYS USE A STORY,RELATE TO COMPUTER SCIENCE, INCLUDE ASSESMENTS AND A TECHNICAL SUMMARY: {entry} ### Assistant:" @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.4, top_p: float = 0.6, top_k: int = 20, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": make_prompt(message)}) enc = tokenizer(make_prompt(message), return_tensors="pt", padding=True, truncation=True) input_ids = enc.input_ids if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) final_story = "".join(outputs) try: saved_story = Story(message=message, content=final_story).save() yield f"{final_story}\n\n Story saved with ID: {saved_story.story_id}" except Exception as e: yield f"Failed to save story: {str(e)}" chat_interface = gr.ChatInterface( fn=generate, stop_btn=None, examples=[ ["Can you explain briefly to me what is the Python programming language?"], ["Could you please provide an explanation about the concept of recursion?"] ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) chat_interface.render() gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20) demo.launch(share=True)