Spaces:
Sleeping
Sleeping
from llama_index.indices.managed.vectara import VectaraIndex | |
from dotenv import load_dotenv | |
import os | |
from docx import Document | |
from llama_index.llms.together import TogetherLLM | |
from llama_index.core.llms import ChatMessage, MessageRole | |
from Bio import Entrez | |
import ssl | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import streamlit as st | |
from googleapiclient.discovery import build | |
from typing import List, Optional | |
load_dotenv() | |
os.environ["VECTARA_INDEX_API_KEY"] = os.getenv("VECTARA_INDEX_API_KEY", "zwt_Vo9cpGzm6QVtABcdnzVq6QXLdGIP4YAcvcyEAA") | |
os.environ["VECTARA_QUERY_API_KEY"] = os.getenv("VECTARA_QUERY_API_KEY", "zqt_Vo9cpBoyEjUQdcTVo2W5hmMKPueBUroBLoGwNQ") | |
os.environ["VECTARA_API_KEY"] = os.getenv("VECTARA_API_KEY", "zut_Vo9cpHni2hWF_DPJAXmRFKkWzRTWbi-8JwnSxA") | |
os.environ["VECTARA_CORPUS_ID"] = os.getenv("VECTARA_CORPUS_ID", "2") | |
os.environ["VECTARA_CUSTOMER_ID"] = os.getenv("VECTARA_CUSTOMER_ID", "1452235940") | |
os.environ["TOGETHER_API"] = os.getenv("TOGETHER_API", "7e6c200b7b36924bc1b4a5973859a20d2efa7180e9b5c977301173a6c099136b") | |
os.environ["GOOGLE_SEARCH_API_KEY"] = os.getenv("GOOGLE_SEARCH_API_KEY", "AIzaSyALmmMjvmrmHGtjjuPLEMy6Bp2qgMQJ3Ck") | |
# Initialize the Vectara index | |
index = VectaraIndex() | |
endpoint = 'https://api.together.xyz/inference' | |
# Load the hallucination evaluation model | |
model_name = "vectara/hallucination_evaluation_model" | |
model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
def vectara_hallucination_evaluation_model(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) | |
outputs = model(**inputs) | |
hallucination_probability = outputs.logits[0][0].item() | |
return hallucination_probability | |
def search_pubmed(query: str) -> Optional[List[str]]: | |
""" | |
Searches PubMed for a given query and returns a list of formatted results | |
(or None if no results are found). | |
""" | |
Entrez.email = "[email protected]" | |
try: | |
ssl._create_default_https_context = ssl._create_unverified_context | |
handle = Entrez.esearch(db="pubmed", term=query, retmax=3) | |
record = Entrez.read(handle) | |
id_list = record["IdList"] | |
if not id_list: | |
return None | |
handle = Entrez.efetch(db="pubmed", id=id_list, retmode="xml") | |
articles = Entrez.read(handle) | |
results = [] | |
for article in articles['PubmedArticle']: | |
try: | |
medline_citation = article['MedlineCitation'] | |
article_data = medline_citation['Article'] | |
title = article_data['ArticleTitle'] | |
abstract = article_data.get('Abstract', {}).get('AbstractText', [""])[0] | |
result = f"**Title:** {title}\n**Abstract:** {abstract}\n" | |
result += f"**Link:** https://pubmed.ncbi.nlm.gov/{medline_citation['PMID']}\n\n" | |
results.append(result) | |
except KeyError as e: | |
print(f"Error parsing article: {article}, Error: {e}") | |
return results | |
except Exception as e: | |
print(f"Error accessing PubMed: {e}") | |
return None | |
def chat_with_pubmed(article_text, article_link): | |
""" | |
Engages in a chat-like interaction with a PubMed article using TogetherLLM. | |
""" | |
try: | |
llm = TogetherLLM(model="QWEN/QWEN1.5-14B-CHAT", api_key=os.environ['TOGETHER_API']) | |
messages = [ | |
ChatMessage(role=MessageRole.SYSTEM, content="You are a helpful AI assistant summarizing and answering questions about the following medical research article: " + article_link), | |
ChatMessage(role=MessageRole.USER, content=article_text) | |
] | |
response = llm.chat(messages) | |
return str(response) if response else "I'm sorry, I couldn't generate a summary for this article." | |
except Exception as e: | |
print(f"Error in chat_with_pubmed: {e}") | |
return "An error occurred while generating a summary." | |
def search_web(query: str, num_results: int = 3) -> Optional[List[str]]: | |
""" | |
Searches the web using the Google Search API and returns a list of formatted results | |
(or None if no results are found). | |
""" | |
try: | |
service = build("customsearch", "v1", developerKey=os.environ["GOOGLE_SEARCH_API_KEY"]) | |
# Execute the search request | |
res = service.cse().list(q=query, cx="6128965e5bcae442b", num=num_results).execute() | |
if "items" not in res: | |
return None | |
results = [] | |
for item in res["items"]: | |
title = item["title"] | |
link = item["link"] | |
snippet = item["snippet"] | |
result = f"**Title:** {title}\n**Link:** {link}\n**Snippet:** {snippet}\n\n" | |
results.append(result) | |
return results | |
except Exception as e: | |
print(f"Error performing web search: {e}") | |
return None | |
def NEXUS_chatbot(user_input, chat_history=None): | |
""" | |
Processes user input, interacts with various resources, and generates a response. | |
Handles potential errors, maintains chat history, and evaluates hallucination risk. | |
""" | |
if chat_history is None: | |
chat_history = [] | |
response_parts = [] # Collect responses from different sources | |
try: | |
# Vectara Search | |
try: | |
query_str = user_input | |
response = index.as_query_engine().query(query_str) | |
response_parts.append(f"**NEXUS Vectara Knowledge Base Response:**\n{response.response}") | |
except Exception as e: | |
print(f"Error in Vectara search: {e}") | |
response_parts.append("Vectara knowledge base is currently unavailable.") | |
# PubMed Search and Chat | |
pubmed_results = search_pubmed(user_input) | |
if pubmed_results: | |
response_parts.append("**PubMed Articles (Chat & Summarize):**") | |
for article_text in pubmed_results: | |
title, abstract, link = article_text.split("\n")[:3] | |
chat_summary = chat_with_pubmed(abstract, link) | |
response_parts.append(f"{title}\n{chat_summary}\n{link}\n") | |
else: | |
response_parts.append("No relevant PubMed articles found.") | |
# Web Search | |
web_results = search_web(user_input) | |
if web_results: | |
response_parts.append("**Web Search Results:**") | |
response_parts.extend(web_results) | |
else: | |
response_parts.append("No relevant web search results found.") | |
# Combine response parts into a single string | |
response_text = "\n\n".join(response_parts) | |
# Hallucination Evaluation | |
def vectara_hallucination_evaluation_model(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
outputs = model(**inputs) | |
hallucination_probability = outputs.logits[0][0].item() | |
return hallucination_probability | |
hallucination_score = vectara_hallucination_evaluation_model(response_text) | |
HIGH_HALLUCINATION_THRESHOLD = 0.9 | |
if hallucination_score > HIGH_HALLUCINATION_THRESHOLD: | |
response_text = "I'm still under development and learning. I cannot confidently answer this question yet." | |
except Exception as e: | |
print(f"Error in chatbot: {e}") | |
response_text = "An error occurred. Please try again later." | |
chat_history.append((user_input, response_text)) | |
return response_text, chat_history | |
def show_info_popup(): | |
with st.expander("How to use NEXUS"): | |
st.write(""" | |
**NEXUS is an AI-powered chatbot designed to assist with medical information.** | |
**Capabilities:** | |
* **Answers general medical questions:** NEXUS utilizes a curated medical knowledge base to provide answers to a wide range of health-related inquiries. | |
* **Summarizes relevant research articles from PubMed:** The chatbot can retrieve and summarize research articles from the PubMed database, making complex scientific information more accessible. | |
* **Provides insights from a curated medical knowledge base:** Beyond simple answers, NEXUS offers additional insights and context from its knowledge base to enhance understanding. | |
* **Perform safe web searches related to your query:** The chatbot can perform web searches using the Google Search API, ensuring the safety and relevance of the results. | |
**Limitations:** | |
* **Not a substitute for professional medical advice:** NEXUS is not intended to replace professional medical diagnosis and treatment. Always consult a qualified healthcare provider for personalized medical advice. | |
* **General knowledge and educational purposes:** The information provided by NEXUS is for general knowledge and educational purposes only and may not be exhaustive or specific to individual situations. | |
* **Under development:** NEXUS is still under development and may occasionally provide inaccurate or incomplete information. It's important to critically evaluate responses and cross-reference with reliable sources. | |
* **Hallucination potential:** While NEXUS employs a hallucination evaluation model to minimize the risk of generating fabricated information, there remains a possibility of encountering inaccurate responses, especially for complex or niche queries. | |
**How to use:** | |
1. **Type your medical question in the text box.** | |
2. **NEXUS will provide a comprehensive response combining information from various sources.** This may include insights from its knowledge base, summaries of relevant research articles, and safe web search results. | |
3. **You can continue the conversation by asking follow-up questions or providing additional context.** This helps NEXUS refine its search and offer more tailored information. | |
4. **in case the NEXUS doesn't show the output please check your internet connection or rerun the same command** | |
5. **user can either chat with the documents or with generate resposne from vectara + pubmed + web search** | |
5. **chat with document feature is still under development so it would be better to avoid using it for now** | |
""") | |
# Initialize session state | |
if 'chat_history' not in st.session_state: | |
st.session_state.chat_history = [] | |
# Define function to display chat history with highlighted user input and chatbot response | |
def display_chat_history(): | |
for user_msg, bot_msg in st.session_state.chat_history: | |
st.info(f"**You:** {user_msg}") | |
st.success(f"**NEXUS:** {bot_msg}") | |
# Define function to clear chat history | |
def clear_chat(): | |
st.session_state.chat_history = [] | |
def main(): | |
# Streamlit Page Configuration | |
st.set_page_config(page_title="NEXUS Chatbot", layout="wide") | |
# Custom Styles | |
st.markdown( | |
""" | |
<style> | |
.css-18e3th9 { | |
padding-top: 2rem; | |
padding-right: 1rem; | |
padding-bottom: 2rem; | |
padding-left: 1rem; | |
} | |
.stButton>button { | |
background-color: #4CAF50; | |
color: white; | |
} | |
body { | |
background-color: #F0FDF4; | |
color: #333333; | |
} | |
.stMarkdown h1, .stMarkdown h2, .stMarkdown h3, .stMarkdown h4, .stMarkdown h5, .stMarkdown h6 { | |
color: #388E3C; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Title and Introduction | |
st.title("NEXUS Chatbot") | |
st.write("Ask your medical questions and get reliable information!") | |
# Example Questions (Sidebar) | |
example_questions = [ | |
"What are the symptoms of COVID-19?", | |
"How can I manage my diabetes?", | |
"What are the potential side effects of ibuprofen?", | |
"What lifestyle changes can help prevent heart disease?" | |
] | |
st.sidebar.header("Example Questions") | |
for question in example_questions: | |
st.sidebar.write(question) | |
# Output Container | |
output_container = st.container() | |
# User Input and Chat History | |
input_container = st.container() | |
with input_container: | |
user_input = st.text_input("You: ", key="input_placeholder", placeholder="Type your medical question here...") | |
new_chat_button = st.button("Start New Chat") | |
if new_chat_button: | |
st.session_state.chat_history = [] # Clear chat history | |
if user_input: | |
response, st.session_state.chat_history = NEXUS_chatbot(user_input, st.session_state.chat_history) | |
with output_container: | |
display_chat_history() | |
# Information Popup | |
show_info_popup() | |
if __name__ == "__main__": | |
main() | |