Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- .env +9 -0
- nexus.py +282 -0
- requirements.txt +14 -0
.env
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
VECTARA_INDEX_API_KEY = "zwt_ni_bLu6MRQXzWKPIU__Uubvy_0Xz_FEr-2sfUg"
|
2 |
+
VECTARA_QUERY_API_KEY = "zwt_ni_bLu6MRQXzWKPIU__Uubvy_0Xz_FEr-2sfUg"
|
3 |
+
VECTARA_API_KEY = "zut_ni_bLoa0I3AeNSjxeZ-UfECnm_9Xv5d4RVBAqw"
|
4 |
+
VECTARA_CORPUS_ID = "2"
|
5 |
+
VECTARA_CUSTOMER_ID = "2653936430"
|
6 |
+
TOGETHER_API = "7e6c200b7b36924bc1b4a5973859a20d2efa7180e9b5c977301173a6c099136b"
|
7 |
+
GOOGLE_SEARCH_API_KEY = "AIzaSyD-1OMuZ0CxGAek0PaXrzHOmcDWFvZQtm8"
|
8 |
+
UNSTRUCTURED_API_KEY = "eBqsGxYYIfTdPRH7PEveZGVIH6ZHny"
|
9 |
+
PINECONE_API_KEY = "4523c180-39fd-4c48-99e8-88164df85b0a"
|
nexus.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_index.indices.managed.vectara import VectaraIndex
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
import os
|
4 |
+
from docx import Document
|
5 |
+
from llama_index.llms.together import TogetherLLM
|
6 |
+
from llama_index.core.llms import ChatMessage, MessageRole
|
7 |
+
from Bio import Entrez
|
8 |
+
import ssl
|
9 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
10 |
+
import streamlit as st
|
11 |
+
from googleapiclient.discovery import build
|
12 |
+
from typing import List, Optional
|
13 |
+
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
os.environ["VECTARA_INDEX_API_KEY"] = os.getenv("VECTARA_INDEX_API_KEY", "zwt_ni_bLu6MRQXzWKPIU__Uubvy_0Xz_FEr-2sfUg")
|
17 |
+
os.environ["VECTARA_QUERY_API_KEY"] = os.getenv("VECTARA_QUERY_API_KEY", "zwt_ni_bLu6MRQXzWKPIU__Uubvy_0Xz_FEr-2sfUg")
|
18 |
+
os.environ["VECTARA_API_KEY"] = os.getenv("VECTARA_API_KEY", "zut_ni_bLoa0I3AeNSjxeZ-UfECnm_9Xv5d4RVBAqw")
|
19 |
+
os.environ["VECTARA_CORPUS_ID"] = os.getenv("VECTARA_CORPUS_ID", "2")
|
20 |
+
os.environ["VECTARA_CUSTOMER_ID"] = os.getenv("VECTARA_CUSTOMER_ID", "2653936430")
|
21 |
+
os.environ["TOGETHER_API"] = os.getenv("TOGETHER_API", "7e6c200b7b36924bc1b4a5973859a20d2efa7180e9b5c977301173a6c099136b")
|
22 |
+
os.environ["GOOGLE_SEARCH_API_KEY"] = os.getenv("GOOGLE_SEARCH_API_KEY", "AIzaSyBnQwS5kPZGKuWj6sH1aBx5F5bZq0Q5jJk")
|
23 |
+
|
24 |
+
# Initialize the Vectara index
|
25 |
+
index = VectaraIndex()
|
26 |
+
|
27 |
+
endpoint = 'https://api.together.xyz/inference'
|
28 |
+
|
29 |
+
# Load the hallucination evaluation model
|
30 |
+
model_name = "vectara/hallucination_evaluation_model"
|
31 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
33 |
+
|
34 |
+
def search_pubmed(query: str) -> Optional[List[str]]:
|
35 |
+
"""
|
36 |
+
Searches PubMed for a given query and returns a list of formatted results
|
37 |
+
(or None if no results are found).
|
38 |
+
"""
|
39 |
+
Entrez.email = "[email protected]"
|
40 |
+
|
41 |
+
try:
|
42 |
+
ssl._create_default_https_context = ssl._create_unverified_context
|
43 |
+
|
44 |
+
handle = Entrez.esearch(db="pubmed", term=query, retmax=3)
|
45 |
+
record = Entrez.read(handle)
|
46 |
+
id_list = record["IdList"]
|
47 |
+
|
48 |
+
if not id_list:
|
49 |
+
return None
|
50 |
+
|
51 |
+
handle = Entrez.efetch(db="pubmed", id=id_list, retmode="xml")
|
52 |
+
articles = Entrez.read(handle)
|
53 |
+
|
54 |
+
results = []
|
55 |
+
for article in articles['PubmedArticle']:
|
56 |
+
try:
|
57 |
+
medline_citation = article['MedlineCitation']
|
58 |
+
article_data = medline_citation['Article']
|
59 |
+
title = article_data['ArticleTitle']
|
60 |
+
abstract = article_data.get('Abstract', {}).get('AbstractText', [""])[0]
|
61 |
+
|
62 |
+
result = f"**Title:** {title}\n**Abstract:** {abstract}\n"
|
63 |
+
result += f"**Link:** https://pubmed.ncbi.nlm.gov/{medline_citation['PMID']}\n\n"
|
64 |
+
results.append(result)
|
65 |
+
except KeyError as e:
|
66 |
+
print(f"Error parsing article: {article}, Error: {e}")
|
67 |
+
|
68 |
+
return results
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error accessing PubMed: {e}")
|
72 |
+
return None
|
73 |
+
|
74 |
+
def chat_with_pubmed(article_text, article_link):
|
75 |
+
"""
|
76 |
+
Engages in a chat-like interaction with a PubMed article using TogetherLLM.
|
77 |
+
"""
|
78 |
+
try:
|
79 |
+
llm = TogetherLLM(model="QWEN/QWEN1.5-14B-CHAT", api_key=os.environ['TOGETHER_API'])
|
80 |
+
messages = [
|
81 |
+
ChatMessage(role=MessageRole.SYSTEM, content="You are a helpful AI assistant summarizing and answering questions about the following medical research article: " + article_link),
|
82 |
+
ChatMessage(role=MessageRole.USER, content=article_text)
|
83 |
+
]
|
84 |
+
response = llm.chat(messages)
|
85 |
+
return str(response) if response else "I'm sorry, I couldn't generate a summary for this article."
|
86 |
+
except Exception as e:
|
87 |
+
print(f"Error in chat_with_pubmed: {e}")
|
88 |
+
return "An error occurred while generating a summary."
|
89 |
+
|
90 |
+
def search_web(query: str, num_results: int = 3) -> Optional[List[str]]:
|
91 |
+
"""
|
92 |
+
Searches the web using the Google Search API and returns a list of formatted results
|
93 |
+
(or None if no results are found).
|
94 |
+
"""
|
95 |
+
try:
|
96 |
+
service = build("customsearch", "v1", developerKey=os.environ["GOOGLE_SEARCH_API_KEY"])
|
97 |
+
|
98 |
+
# Execute the search request
|
99 |
+
res = service.cse().list(q=query, cx="877170db56f5c4629", num=num_results).execute()
|
100 |
+
|
101 |
+
if "items" not in res:
|
102 |
+
return None
|
103 |
+
|
104 |
+
results = []
|
105 |
+
for item in res["items"]:
|
106 |
+
title = item["title"]
|
107 |
+
link = item["link"]
|
108 |
+
snippet = item["snippet"]
|
109 |
+
result = f"**Title:** {title}\n**Link:** {link}\n**Snippet:** {snippet}\n\n"
|
110 |
+
results.append(result)
|
111 |
+
|
112 |
+
return results
|
113 |
+
|
114 |
+
except Exception as e:
|
115 |
+
print(f"Error performing web search: {e}")
|
116 |
+
return None
|
117 |
+
|
118 |
+
def NEXUS_chatbot(user_input, chat_history=None):
|
119 |
+
"""
|
120 |
+
Processes user input, interacts with various resources, and generates a response.
|
121 |
+
Handles potential errors, maintains chat history, and evaluates hallucination risk.
|
122 |
+
"""
|
123 |
+
|
124 |
+
if chat_history is None:
|
125 |
+
chat_history = []
|
126 |
+
|
127 |
+
response_parts = [] # Collect responses from different sources
|
128 |
+
|
129 |
+
try:
|
130 |
+
# Vectara Search
|
131 |
+
try:
|
132 |
+
query_str = user_input
|
133 |
+
response = index.as_query_engine().query(query_str)
|
134 |
+
response_parts.append(f"**NEXUS Vectara Knowledge Base Response:**\n{response.response}")
|
135 |
+
except Exception as e:
|
136 |
+
print(f"Error in Vectara search: {e}")
|
137 |
+
response_parts.append("Vectara knowledge base is currently unavailable.")
|
138 |
+
|
139 |
+
# PubMed Search and Chat
|
140 |
+
pubmed_results = search_pubmed(user_input)
|
141 |
+
if pubmed_results:
|
142 |
+
response_parts.append("**PubMed Articles (Chat & Summarize):**")
|
143 |
+
for article_text in pubmed_results:
|
144 |
+
title, abstract, link = article_text.split("\n")[:3]
|
145 |
+
chat_summary = chat_with_pubmed(abstract, link)
|
146 |
+
response_parts.append(f"{title}\n{chat_summary}\n{link}\n")
|
147 |
+
else:
|
148 |
+
response_parts.append("No relevant PubMed articles found.")
|
149 |
+
|
150 |
+
# Web Search
|
151 |
+
web_results = search_web(user_input)
|
152 |
+
if web_results:
|
153 |
+
response_parts.append("**Web Search Results:**")
|
154 |
+
response_parts.extend(web_results)
|
155 |
+
else:
|
156 |
+
response_parts.append("No relevant web search results found.")
|
157 |
+
|
158 |
+
# Combine response parts into a single string
|
159 |
+
response_text = "\n\n".join(response_parts)
|
160 |
+
|
161 |
+
# Hallucination Evaluation
|
162 |
+
def vectara_hallucination_evaluation_model(text):
|
163 |
+
inputs = tokenizer(text, return_tensors="pt")
|
164 |
+
outputs = model(**inputs)
|
165 |
+
hallucination_probability = outputs.logits[0][0].item()
|
166 |
+
return hallucination_probability
|
167 |
+
|
168 |
+
hallucination_score = vectara_hallucination_evaluation_model(response_text)
|
169 |
+
HIGH_HALLUCINATION_THRESHOLD = 0.9
|
170 |
+
if hallucination_score > HIGH_HALLUCINATION_THRESHOLD:
|
171 |
+
response_text = "I'm still under development and learning. I cannot confidently answer this question yet."
|
172 |
+
|
173 |
+
except Exception as e:
|
174 |
+
print(f"Error in chatbot: {e}")
|
175 |
+
response_text = "An error occurred. Please try again later."
|
176 |
+
|
177 |
+
chat_history.append((user_input, response_text))
|
178 |
+
return response_text, chat_history
|
179 |
+
|
180 |
+
def show_info_popup():
|
181 |
+
with st.expander("How to use NEXUS"):
|
182 |
+
st.write("""
|
183 |
+
**NEXUS is an AI-powered chatbot designed to assist with medical information.**
|
184 |
+
**Capabilities:**
|
185 |
+
* **Answers general medical questions:** NEXUS utilizes a curated medical knowledge base to provide answers to a wide range of health-related inquiries.
|
186 |
+
* **Summarizes relevant research articles from PubMed:** The chatbot can retrieve and summarize research articles from the PubMed database, making complex scientific information more accessible.
|
187 |
+
* **Provides insights from a curated medical knowledge base:** Beyond simple answers, NEXUS offers additional insights and context from its knowledge base to enhance understanding.
|
188 |
+
* **Perform safe web searches related to your query:** The chatbot can perform web searches using the Google Search API, ensuring the safety and relevance of the results.
|
189 |
+
**Limitations:**
|
190 |
+
* **Not a substitute for professional medical advice:** NEXUS is not intended to replace professional medical diagnosis and treatment. Always consult a qualified healthcare provider for personalized medical advice.
|
191 |
+
* **General knowledge and educational purposes:** The information provided by NEXUS is for general knowledge and educational purposes only and may not be exhaustive or specific to individual situations.
|
192 |
+
* **Under development:** NEXUS is still under development and may occasionally provide inaccurate or incomplete information. It's important to critically evaluate responses and cross-reference with reliable sources.
|
193 |
+
* **Hallucination potential:** While NEXUS employs a hallucination evaluation model to minimize the risk of generating fabricated information, there remains a possibility of encountering inaccurate responses, especially for complex or niche queries.
|
194 |
+
**How to use:**
|
195 |
+
1. **Type your medical question in the text box.**
|
196 |
+
2. **NEXUS will provide a comprehensive response combining information from various sources.** This may include insights from its knowledge base, summaries of relevant research articles, and safe web search results.
|
197 |
+
3. **You can continue the conversation by asking follow-up questions or providing additional context.** This helps NEXUS refine its search and offer more tailored information.
|
198 |
+
4. **in case the Medmind doesn't show the output please check your internet connection or rerun the same command**
|
199 |
+
5. **user can either chat with the documents or with generate resposne from vectara + pubmed + web search**
|
200 |
+
5. **chat with document feature is still under development so it would be better to avoid using it for now**
|
201 |
+
""")
|
202 |
+
|
203 |
+
# Initialize session state
|
204 |
+
if 'chat_history' not in st.session_state:
|
205 |
+
st.session_state.chat_history = []
|
206 |
+
|
207 |
+
# Define function to display chat history with highlighted user input and chatbot response
|
208 |
+
def display_chat_history():
|
209 |
+
for user_msg, bot_msg in st.session_state.chat_history:
|
210 |
+
st.info(f"**You:** {user_msg}")
|
211 |
+
st.success(f"**NEXUS:** {bot_msg}")
|
212 |
+
|
213 |
+
# Define function to clear chat history
|
214 |
+
def clear_chat():
|
215 |
+
st.session_state.chat_history = []
|
216 |
+
|
217 |
+
def main():
|
218 |
+
# Streamlit Page Configuration
|
219 |
+
st.set_page_config(page_title="NEXUS Chatbot", layout="wide")
|
220 |
+
|
221 |
+
# Custom Styles
|
222 |
+
st.markdown(
|
223 |
+
"""
|
224 |
+
<style>
|
225 |
+
.css-18e3th9 {
|
226 |
+
padding-top: 2rem;
|
227 |
+
padding-right: 1rem;
|
228 |
+
padding-bottom: 2rem;
|
229 |
+
padding-left: 1rem;
|
230 |
+
}
|
231 |
+
.stButton>button {
|
232 |
+
background-color: #4CAF50;
|
233 |
+
color: white;
|
234 |
+
}
|
235 |
+
body {
|
236 |
+
background-color: #F0FDF4;
|
237 |
+
color: #333333;
|
238 |
+
}
|
239 |
+
.stMarkdown h1, .stMarkdown h2, .stMarkdown h3, .stMarkdown h4, .stMarkdown h5, .stMarkdown h6 {
|
240 |
+
color: #388E3C;
|
241 |
+
}
|
242 |
+
</style>
|
243 |
+
""",
|
244 |
+
unsafe_allow_html=True,
|
245 |
+
)
|
246 |
+
|
247 |
+
# Title and Introduction
|
248 |
+
st.title("NEXUS Chatbot")
|
249 |
+
st.write("Ask your medical questions and get reliable information!")
|
250 |
+
|
251 |
+
# Example Questions (Sidebar)
|
252 |
+
example_questions = [
|
253 |
+
"What are the symptoms of COVID-19?",
|
254 |
+
"How can I manage my diabetes?",
|
255 |
+
"What are the potential side effects of ibuprofen?",
|
256 |
+
"What lifestyle changes can help prevent heart disease?"
|
257 |
+
]
|
258 |
+
st.sidebar.header("Example Questions")
|
259 |
+
for question in example_questions:
|
260 |
+
st.sidebar.write(question)
|
261 |
+
|
262 |
+
# Output Container
|
263 |
+
output_container = st.container()
|
264 |
+
|
265 |
+
# User Input and Chat History
|
266 |
+
input_container = st.container()
|
267 |
+
with input_container:
|
268 |
+
user_input = st.text_input("You: ", key="input_placeholder", placeholder="Type your medical question here...")
|
269 |
+
new_chat_button = st.button("Start New Chat")
|
270 |
+
if new_chat_button:
|
271 |
+
st.session_state.chat_history = [] # Clear chat history
|
272 |
+
|
273 |
+
if user_input:
|
274 |
+
response, st.session_state.chat_history = NEXUS_chatbot(user_input, st.session_state.chat_history)
|
275 |
+
with output_container:
|
276 |
+
display_chat_history()
|
277 |
+
|
278 |
+
# Information Popup
|
279 |
+
show_info_popup()
|
280 |
+
|
281 |
+
if __name__ == "__main__":
|
282 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
llama-index
|
2 |
+
python-dotenv
|
3 |
+
PyPDF2
|
4 |
+
python-docx
|
5 |
+
sentence-transformers
|
6 |
+
biopython
|
7 |
+
langchain
|
8 |
+
transformers
|
9 |
+
streamlit
|
10 |
+
google-api-python-client
|
11 |
+
langchain-community
|
12 |
+
llama-index-embeddings-huggingface
|
13 |
+
llama-index-llms-together
|
14 |
+
llama-index-indices-managed-vectara
|