File size: 2,525 Bytes
188b4e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c8acf4
 
 
 
 
 
 
 
 
 
4895bd1
3c8acf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import json
import gradio as gr
import requests
import logging
import base64
from PIL import Image
from io import BytesIO
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Get API key from environment variables
PLANT_ID_API_KEY = os.getenv("PLANT_ID_API_KEY")

if not PLANT_ID_API_KEY:
    raise ValueError("❌ API Key is missing! Set PLANT_ID_API_KEY in Hugging Face Secrets.")

# Configure Logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

# Plant.id API URL
PLANT_ID_URL = "https://api.plant.id/v2/health_assessment"

# Function to analyze plant health using Plant.id API
def analyze_plant_health(image):
    try:
        # Convert image to bytes & encode in Base64
        buffered = BytesIO()
        image.save(buffered, format="JPEG")
        img_base64 = base64.b64encode(buffered.getvalue()).decode()

        # Send request to Plant.id API
        headers = {"Content-Type": "application/json"}
        payload = {
            "images": [f"data:image/jpeg;base64,{img_base64}"],
            "organs": ["leaf"],
            "api_key": PLANT_ID_API_KEY
        }

        response = requests.post(PLANT_ID_URL, headers=headers, json=payload)

        if response.status_code != 200:
            return f"❌ API Error: {response.text}"

        data = response.json()

        if "health_assessment" not in data or not data["health_assessment"].get("diseases"):
            return "βœ… No disease detected! Your plant looks healthy. 🌿"

        assessment = data["health_assessment"]
        disease_info = assessment["diseases"][0]
        predicted_disease = disease_info.get("name", "Unknown Disease")
        treatment = disease_info.get("treatment", "No treatment suggestions available.")

        return f"""
        🌱 **Predicted Disease:** {predicted_disease}  
        πŸ’Š **Treatment:** {treatment}  
        """

    except Exception as e:
        logging.error(f"Prediction failed: {str(e)}")
        return f"❌ Error: {str(e)}"

# Launch Gradio App
if __name__ == "__main__":
    iface = gr.Interface(
        fn=analyze_plant_health,
        inputs=gr.Image(type="pil", label="πŸ“Έ Upload or Capture a Plant Image"),
        outputs=gr.Textbox(label="πŸ” Diagnosis & Treatment"),
        title="🌿 AI-Powered Plant Disease Detector",
        description="πŸ“· Upload an image of a plant leaf to detect diseases and get treatment suggestions.",
        allow_flagging="never"
    )

    iface.launch()