Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,111 +1,80 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
3 |
-
from PIL import Image
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
-
from fastapi import FastAPI, UploadFile, File, HTTPException
|
7 |
-
import uvicorn
|
8 |
-
import io
|
9 |
import json
|
10 |
-
import threading
|
11 |
-
import os
|
12 |
import logging
|
13 |
-
import
|
14 |
-
import sys
|
15 |
|
16 |
# Configure Logging
|
17 |
-
logging.basicConfig(level=logging.INFO)
|
18 |
|
19 |
# Load Model & Processor
|
20 |
model_name = "linkanjarad/mobilenet_v2_1.0_224-plant-disease-identification"
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
disease_treatments = {
|
35 |
-
"Powdery Mildew": "Use fungicides like sulfur or neem oil. Improve air circulation.",
|
36 |
-
"Leaf Blight": "Apply copper-based fungicides and ensure proper plant spacing.",
|
37 |
-
"Rust": "Use resistant varieties and apply organic sulfur fungicide.",
|
38 |
-
"Healthy": "No disease detected! Keep maintaining proper watering and soil health.",
|
39 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
#
|
42 |
def validate_image(image):
|
43 |
if image.size[0] < 64 or image.size[1] < 64:
|
44 |
-
raise ValueError("Image is too small. Please upload an image
|
45 |
return image
|
46 |
|
47 |
-
#
|
48 |
def predict(image):
|
49 |
try:
|
50 |
-
image =
|
|
|
|
|
51 |
inputs = processor(images=image, return_tensors="pt")
|
52 |
with torch.no_grad():
|
53 |
outputs = model(**inputs)
|
54 |
logits = outputs.logits
|
55 |
predicted_class_idx = logits.argmax(-1).item()
|
56 |
predicted_label = model.config.id2label[predicted_class_idx]
|
57 |
-
|
58 |
-
|
|
|
|
|
59 |
except Exception as e:
|
60 |
logging.error(f"Prediction failed: {str(e)}")
|
61 |
-
return
|
62 |
|
63 |
# Gradio Interface
|
64 |
iface = gr.Interface(
|
65 |
-
fn=
|
66 |
-
inputs=gr.Image(type="numpy"),
|
67 |
-
outputs="
|
68 |
-
title="
|
69 |
-
description="Upload
|
|
|
70 |
)
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
-
async def api_predict(file: UploadFile = File(...)):
|
75 |
-
logging.info(f"Received file: {file.filename}")
|
76 |
-
try:
|
77 |
-
contents = await file.read()
|
78 |
-
image = Image.open(io.BytesIO(contents)).convert("RGB")
|
79 |
-
image_array = np.array(image)
|
80 |
-
prediction = predict(image_array)
|
81 |
-
logging.info(f"Prediction successful: {prediction}")
|
82 |
-
return {"prediction": prediction}
|
83 |
-
except UnidentifiedImageError:
|
84 |
-
logging.error("Invalid image file uploaded.")
|
85 |
-
raise HTTPException(status_code=400, detail="Invalid image file. Please upload a valid image.")
|
86 |
-
except ValueError as ve:
|
87 |
-
logging.error(f"ValueError during prediction: {str(ve)}")
|
88 |
-
raise HTTPException(status_code=400, detail=f"Invalid input: {str(ve)}")
|
89 |
-
except Exception as e:
|
90 |
-
logging.error(f"Internal server error: {str(e)}")
|
91 |
-
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
92 |
-
|
93 |
-
# Configurable Ports
|
94 |
-
FASTAPI_PORT = int(os.getenv("FASTAPI_PORT", 7860))
|
95 |
-
GRADIO_PORT = int(os.getenv("GRADIO_PORT", 7862)) # Changed from 7861 to 7862
|
96 |
-
|
97 |
-
# Graceful Shutdown
|
98 |
-
def shutdown(signum, frame):
|
99 |
-
logging.info("Shutting down servers...")
|
100 |
-
sys.exit(0)
|
101 |
-
|
102 |
-
signal.signal(signal.SIGINT, shutdown)
|
103 |
-
signal.signal(signal.SIGTERM, shutdown)
|
104 |
-
|
105 |
-
# Run FastAPI & Gradio Together
|
106 |
-
def run_fastapi():
|
107 |
-
uvicorn.run(app, host="0.0.0.0", port=FASTAPI_PORT)
|
108 |
-
|
109 |
-
if __name__ == "__main__":
|
110 |
-
threading.Thread(target=run_fastapi, daemon=True).start()
|
111 |
-
iface.launch(server_name="0.0.0.0", server_port=GRADIO_PORT, share=True)
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
3 |
+
from PIL import Image
|
4 |
import torch
|
5 |
import numpy as np
|
|
|
|
|
|
|
6 |
import json
|
|
|
|
|
7 |
import logging
|
8 |
+
import os
|
|
|
9 |
|
10 |
# Configure Logging
|
11 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
12 |
|
13 |
# Load Model & Processor
|
14 |
model_name = "linkanjarad/mobilenet_v2_1.0_224-plant-disease-identification"
|
15 |
+
try:
|
16 |
+
processor = AutoImageProcessor.from_pretrained(model_name, use_fast=True)
|
17 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
18 |
+
logging.info("✅ Model and processor loaded successfully.")
|
19 |
+
except Exception as e:
|
20 |
+
logging.error(f"❌ Failed to load model: {str(e)}")
|
21 |
+
raise RuntimeError("Failed to load the model. Please check the logs for details.")
|
22 |
|
23 |
+
# Load or Create Disease Treatment Database
|
24 |
+
disease_treatments_file = "disease_treatments.json"
|
25 |
|
26 |
+
if not os.path.exists(disease_treatments_file):
|
27 |
+
logging.warning("⚠️ Treatment database file not found. Creating a default one.")
|
28 |
+
default_treatments = {
|
29 |
+
"Powdery Mildew": "Use fungicides like sulfur or neem oil.",
|
30 |
+
"Leaf Blight": "Apply copper-based fungicides.",
|
31 |
+
"Rust": "Use resistant varieties.",
|
32 |
+
"Healthy": "No disease detected!",
|
|
|
|
|
|
|
|
|
|
|
33 |
}
|
34 |
+
with open(disease_treatments_file, "w") as file:
|
35 |
+
json.dump(default_treatments, file)
|
36 |
+
logging.info("✅ Created default 'disease_treatments.json' file.")
|
37 |
+
|
38 |
+
# Load Treatments
|
39 |
+
with open(disease_treatments_file, "r") as file:
|
40 |
+
disease_treatments = json.load(file)
|
41 |
+
logging.info("✅ Treatment database loaded successfully.")
|
42 |
|
43 |
+
# Image Validation
|
44 |
def validate_image(image):
|
45 |
if image.size[0] < 64 or image.size[1] < 64:
|
46 |
+
raise ValueError("⚠️ Image is too small. Please upload an image of at least 64x64 pixels.")
|
47 |
return image
|
48 |
|
49 |
+
# Prediction Function
|
50 |
def predict(image):
|
51 |
try:
|
52 |
+
image = Image.fromarray(np.uint8(image)).convert("RGB")
|
53 |
+
validate_image(image)
|
54 |
+
|
55 |
inputs = processor(images=image, return_tensors="pt")
|
56 |
with torch.no_grad():
|
57 |
outputs = model(**inputs)
|
58 |
logits = outputs.logits
|
59 |
predicted_class_idx = logits.argmax(-1).item()
|
60 |
predicted_label = model.config.id2label[predicted_class_idx]
|
61 |
+
|
62 |
+
treatment = disease_treatments.get(predicted_label, "No treatment information available for this disease.")
|
63 |
+
return f"Predicted Disease: {predicted_label}\nTreatment: {treatment}"
|
64 |
+
|
65 |
except Exception as e:
|
66 |
logging.error(f"Prediction failed: {str(e)}")
|
67 |
+
return f"❌ Prediction failed: {str(e)}"
|
68 |
|
69 |
# Gradio Interface
|
70 |
iface = gr.Interface(
|
71 |
+
fn=predict,
|
72 |
+
inputs=gr.Image(type="numpy", label="Upload or capture plant image"),
|
73 |
+
outputs=gr.Textbox(label="Result"),
|
74 |
+
title="Plant Disease Detector",
|
75 |
+
description="Upload a plant leaf image to detect diseases and get treatment suggestions.",
|
76 |
+
allow_flagging="never",
|
77 |
)
|
78 |
|
79 |
+
# Launch Gradio App
|
80 |
+
iface.launch(share=True) # No fixed port to avoid conflicts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|