Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,11 +6,11 @@ import torch
|
|
6 |
import numpy as np
|
7 |
import requests
|
8 |
import logging
|
9 |
-
from dotenv import load_dotenv # Load .env file
|
10 |
|
11 |
-
# Load
|
12 |
-
load_dotenv()
|
13 |
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
|
|
|
|
|
14 |
|
15 |
# Configure Logging
|
16 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
@@ -33,12 +33,16 @@ def get_treatment_suggestions(disease_name):
|
|
33 |
|
34 |
try:
|
35 |
response = requests.post(url, headers=headers, json=data)
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
else:
|
39 |
-
|
|
|
40 |
except Exception as e:
|
41 |
-
|
|
|
42 |
|
43 |
# Define Prediction Function
|
44 |
def predict(image):
|
@@ -50,11 +54,11 @@ def predict(image):
|
|
50 |
logits = outputs.logits
|
51 |
predicted_class_idx = logits.argmax(-1).item()
|
52 |
predicted_label = model.config.id2label[predicted_class_idx]
|
53 |
-
|
54 |
# Get AI-generated treatment suggestions
|
55 |
treatment = get_treatment_suggestions(predicted_label)
|
56 |
-
|
57 |
-
return f"Predicted Disease
|
58 |
except Exception as e:
|
59 |
logging.error(f"Prediction failed: {str(e)}")
|
60 |
return f"❌ Prediction failed: {str(e)}"
|
@@ -64,8 +68,8 @@ iface = gr.Interface(
|
|
64 |
fn=predict,
|
65 |
inputs=gr.Image(type="numpy", label="Upload or capture plant image"),
|
66 |
outputs=gr.Textbox(label="Result"),
|
67 |
-
title="AI-Powered Plant Disease Detector",
|
68 |
-
description="Upload a plant leaf image to detect diseases and get AI-powered treatment suggestions.",
|
69 |
allow_flagging="never",
|
70 |
)
|
71 |
|
|
|
6 |
import numpy as np
|
7 |
import requests
|
8 |
import logging
|
|
|
9 |
|
10 |
+
# Load Hugging Face API Key from Secrets
|
|
|
11 |
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
|
12 |
+
if not HUGGINGFACE_API_KEY:
|
13 |
+
raise ValueError("❌ Missing Hugging Face API Key. Please set it in Hugging Face Secrets.")
|
14 |
|
15 |
# Configure Logging
|
16 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
|
33 |
|
34 |
try:
|
35 |
response = requests.post(url, headers=headers, json=data)
|
36 |
+
response_data = response.json()
|
37 |
+
|
38 |
+
if response.status_code == 200 and isinstance(response_data, list):
|
39 |
+
return response_data[0].get("generated_text", "No treatment information found.")
|
40 |
else:
|
41 |
+
logging.error(f"API Error {response.status_code}: {response_data}")
|
42 |
+
return f"API Error {response.status_code}: {response_data.get('error', 'Unknown error')}"
|
43 |
except Exception as e:
|
44 |
+
logging.error(f"Error fetching treatment suggestions: {str(e)}")
|
45 |
+
return "❌ Error retrieving treatment details."
|
46 |
|
47 |
# Define Prediction Function
|
48 |
def predict(image):
|
|
|
54 |
logits = outputs.logits
|
55 |
predicted_class_idx = logits.argmax(-1).item()
|
56 |
predicted_label = model.config.id2label[predicted_class_idx]
|
57 |
+
|
58 |
# Get AI-generated treatment suggestions
|
59 |
treatment = get_treatment_suggestions(predicted_label)
|
60 |
+
|
61 |
+
return f"🌱 **Predicted Disease:** {predicted_label}\n💊 **Treatment:** {treatment}"
|
62 |
except Exception as e:
|
63 |
logging.error(f"Prediction failed: {str(e)}")
|
64 |
return f"❌ Prediction failed: {str(e)}"
|
|
|
68 |
fn=predict,
|
69 |
inputs=gr.Image(type="numpy", label="Upload or capture plant image"),
|
70 |
outputs=gr.Textbox(label="Result"),
|
71 |
+
title="🌿 AI-Powered Plant Disease Detector",
|
72 |
+
description="📷 Upload a plant leaf image to detect diseases and get AI-powered treatment suggestions.",
|
73 |
allow_flagging="never",
|
74 |
)
|
75 |
|