File size: 6,660 Bytes
28b8eac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
<<<<<<< HEAD
import streamlit as st
import cv2
from collections import defaultdict
import supervision as sv
from ultralytics import YOLO
import os

def ensure_dir(file_path):
    if not os.path.exists(file_path):
        os.makedirs(file_path)

def process_video(input_video_path, output_video_path):
    model = YOLO('yolov8x-seg.pt')
    cap = cv2.VideoCapture(input_video_path)
    START = sv.Point(1250, -2)
    END = sv.Point(1250, 1070)
    track_history = defaultdict(list)
    crossed_objects = {}

    ensure_dir(os.path.dirname(output_video_path))

    if cap.isOpened():
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        # Use H.264 codec
        fourcc = cv2.VideoWriter_fourcc(*'avc1')  # Alternatively, use 'X264' if 'avc1' doesn't work

        out = cv2.VideoWriter(output_video_path, fourcc, 20.0, (width, height), True)

        while cap.isOpened():
            success, frame = cap.read()
            if not success:
                break

            results = model.track(frame, conf=0.3, classes=[19], persist=True, save=True, tracker="bytetrack.yaml")
            boxes = results[0].boxes.xywh.cpu()
            track_ids = results[0].boxes.id.int().cpu().tolist()

            annotated_frame = results[0].plot() if hasattr(results[0], 'plot') else frame

            for box, track_id in zip(boxes, track_ids):
                x, y, w, h = box
                track = track_history[track_id]
                track.append(x)

                if len(track) > 1:  # Checking if we have at least two points to compare
                    if track[-2] <= START.x < track[-1] or track[-2] >= START.x > track[-1]:
                        if track_id not in crossed_objects:
                            crossed_objects[track_id] = True
                        cv2.rectangle(annotated_frame, (int(x - w / 2), int(y - h / 2)), (int(x + w / 2), int(y + h / 2)), (0, 255, 0), 2)

            cv2.line(annotated_frame, (START.x, START.y), (END.x, END.y), (0, 255, 0), 2)
            count_text = f"Objects crossed: {len(crossed_objects)}"
            cv2.putText(annotated_frame, count_text, (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 3, (0, 255, 0), 4)

            out.write(annotated_frame)

        cap.release()
        out.release()

def main():
    st.title("Video Processing for Object Tracking")
    video_file = st.file_uploader("Upload a video", type=['mp4', 'avi'])

    if video_file is not None:
        output_folder = "output_videos"
        ensure_dir(output_folder)
        file_path = os.path.join(output_folder, "uploaded_video.mp4")
        file_name = os.path.join(output_folder, "processed_video.mp4")

        # Save the uploaded file first
        with open(file_path, "wb") as f:
            f.write(video_file.getbuffer())

        if st.button("Process Video"):
            process_video(file_path, file_name)
            st.video(file_name)

            with open(file_name, "rb") as file:
                st.download_button(
                    label="Download processed video",
                    data=file,
                    file_name="processed_video.mp4",
                    mime="video/mp4"
                )

if __name__ == "__main__":
    main()
=======
import streamlit as st
import cv2
from collections import defaultdict
import supervision as sv
from ultralytics import YOLO
import os

def ensure_dir(file_path):
    if not os.path.exists(file_path):
        os.makedirs(file_path)

def process_video(input_video_path, output_video_path):
    model = YOLO('yolov8x-seg.pt')
    cap = cv2.VideoCapture(input_video_path)
    START = sv.Point(1250, -2)
    END = sv.Point(1250, 1070)
    track_history = defaultdict(list)
    crossed_objects = {}

    ensure_dir(os.path.dirname(output_video_path))

    if cap.isOpened():
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        # Use H.264 codec
        fourcc = cv2.VideoWriter_fourcc(*'avc1')  # Alternatively, use 'X264' if 'avc1' doesn't work

        out = cv2.VideoWriter(output_video_path, fourcc, 20.0, (width, height), True)

        while cap.isOpened():
            success, frame = cap.read()
            if not success:
                break

            results = model.track(frame, conf=0.3, classes=[19], persist=True, save=True, tracker="bytetrack.yaml")
            boxes = results[0].boxes.xywh.cpu()
            track_ids = results[0].boxes.id.int().cpu().tolist()

            annotated_frame = results[0].plot() if hasattr(results[0], 'plot') else frame

            for box, track_id in zip(boxes, track_ids):
                x, y, w, h = box
                track = track_history[track_id]
                track.append(x)

                if len(track) > 1:  # Checking if we have at least two points to compare
                    if track[-2] <= START.x < track[-1] or track[-2] >= START.x > track[-1]:
                        if track_id not in crossed_objects:
                            crossed_objects[track_id] = True
                        cv2.rectangle(annotated_frame, (int(x - w / 2), int(y - h / 2)), (int(x + w / 2), int(y + h / 2)), (0, 255, 0), 2)

            cv2.line(annotated_frame, (START.x, START.y), (END.x, END.y), (0, 255, 0), 2)
            count_text = f"Objects crossed: {len(crossed_objects)}"
            cv2.putText(annotated_frame, count_text, (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 3, (0, 255, 0), 4)

            out.write(annotated_frame)

        cap.release()
        out.release()

def main():
    st.title("Video Processing for Object Tracking")
    video_file = st.file_uploader("Upload a video", type=['mp4', 'avi'])

    if video_file is not None:
        output_folder = "output_videos"
        ensure_dir(output_folder)
        file_path = os.path.join(output_folder, "uploaded_video.mp4")
        file_name = os.path.join(output_folder, "processed_video.mp4")

        # Save the uploaded file first
        with open(file_path, "wb") as f:
            f.write(video_file.getbuffer())

        if st.button("Process Video"):
            process_video(file_path, file_name)
            st.video(file_name)

            with open(file_name, "rb") as file:
                st.download_button(
                    label="Download processed video",
                    data=file,
                    file_name="processed_video.mp4",
                    mime="video/mp4"
                )

if __name__ == "__main__":
    main()
>>>>>>> d78b5b6f19f193037683178f33d0fd971846eef2