Spaces:
Runtime error
Runtime error
import gradio as gr | |
from ultralytics import YOLO | |
from ultralytics.solutions import ai_gym | |
import cv2 | |
def process(video_path): | |
model = YOLO("yolov8n-pose.pt") | |
cap = cv2.VideoCapture(video_path) | |
assert cap.isOpened(), "Error reading video file" | |
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) | |
video_writer = cv2.VideoWriter("output_video.mp4", | |
cv2.VideoWriter_fourcc(*'mp4v'), | |
fps, | |
(w, h)) | |
gym_object = ai_gym.AIGym() # init AI GYM module | |
gym_object.set_args(line_thickness=2, | |
view_img=False, # Set view_img to False to prevent displaying the video in real-time | |
pose_type="pullup", | |
kpts_to_check=[6, 8, 10]) | |
frame_count = 0 | |
while cap.isOpened(): | |
success, im0 = cap.read() | |
if not success: | |
print("Video processing has been successfully completed.") | |
break | |
frame_count += 1 | |
results = model.track(im0, verbose=False) # Tracking recommended | |
im0 = gym_object.start_counting(im0, results, frame_count) | |
video_writer.write(im0) | |
cap.release() | |
video_writer.release() | |
cv2.destroyAllWindows() | |
return "output_video.mp4" | |
title = "Push-up Counter" | |
description = "This app counts the number of push-ups in a video." | |
# inputs = gr.inputs.Video(label='Input Video') | |
# outputs = gr.outputs.Video(label='Processed Video') | |
# example_list = ['pullups.mp4'] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=process, | |
inputs=gr.Video(label='Input Video'), | |
outputs=gr.Video(label='Output Video') | |
# title=title, | |
# description=description, | |
# examples=example_list | |
) | |
# Launch the demo! | |
demo.launch(show_api=True) | |
# import gradio as gr | |
# from ultralytics import YOLO | |
# from ultralytics.solutions import ai_gym | |
# import cv2 | |
# import tempfile | |
# from PIL import Image | |
# import subprocess | |
# # Function to upgrade pip | |
# def upgrade_pip(): | |
# subprocess.run(['pip', 'install', '--upgrade', 'pip']) | |
# # Function to process video | |
# def process(video_path): | |
# upgrade_pip() # Upgrade pip before executing the main function | |
# model = YOLO("yolov8n-pose.pt") | |
# cap = cv2.VideoCapture(video_path) | |
# assert cap.isOpened(), "Error reading video file" | |
# w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) | |
# temp_dir = tempfile.mkdtemp() # Create a temporary directory to store processed frames | |
# video_writer = cv2.VideoWriter("output_video.mp4", | |
# cv2.VideoWriter_fourcc(*'mp4v'), | |
# fps, | |
# (w, h)) | |
# gym_object = ai_gym.AIGym() # init AI GYM module | |
# gym_object.set_args(line_thickness=2, | |
# view_img=False, # Set view_img to False to prevent displaying the video in real-time | |
# pose_type="pushup", | |
# kpts_to_check=[6, 8, 10]) | |
# frame_count = 0 | |
# while cap.isOpened(): | |
# success, im0 = cap.read() | |
# if not success: | |
# print("Video frame is empty or video processing has been successfully completed.") | |
# break | |
# frame_count += 1 | |
# if frame_count % 5 == 0: # Process every 5th frame | |
# results = model.track(im0, verbose=False) # Tracking recommended | |
# im0 = gym_object.start_counting(im0, results, frame_count) | |
# # Save processed frame as an image in the temporary directory | |
# cv2.imwrite(f"{temp_dir}/{frame_count}.jpg", im0) | |
# # Use PIL to create the final video from the processed frames | |
# images = [Image.open(f"{temp_dir}/{i}.jpg") for i in range(1, frame_count + 1)] | |
# images[0].save("output_video.mp4", save_all=True, append_images=images[1:], duration=1000/fps, loop=0) | |
# cap.release() | |
# cv2.destroyAllWindows() | |
# return "output_video.mp4" | |
# # Create the Gradio demo | |
# demo = gr.Interface(fn=process, | |
# inputs=gr.Video(label='Input Video'), | |
# outputs=gr.Video(label='Processed Video')) | |
# # Launch the demo! | |
# demo.launch(show_api=False) | |