Spaces:
Runtime error
Runtime error
Rename test.py to main.py
Browse files- test.py → main.py +65 -47
test.py → main.py
RENAMED
@@ -1,5 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# from ultralytics import YOLO
|
2 |
-
# import ai_gym
|
3 |
# import cv2
|
4 |
|
5 |
# model = YOLO("yolov8n-pose.pt")
|
@@ -7,65 +61,29 @@
|
|
7 |
# assert cap.isOpened(), "Error reading video file"
|
8 |
# w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
9 |
|
10 |
-
# video_writer = cv2.VideoWriter("
|
11 |
-
#
|
12 |
-
#
|
13 |
-
#
|
14 |
|
15 |
# gym_object = ai_gym.AIGym() # init AI GYM module
|
16 |
# gym_object.set_args(line_thickness=2,
|
17 |
-
# view_img=
|
18 |
-
# pose_type="
|
19 |
# kpts_to_check=[6, 8, 10])
|
20 |
|
21 |
# frame_count = 0
|
22 |
# while cap.isOpened():
|
23 |
# success, im0 = cap.read()
|
24 |
# if not success:
|
25 |
-
#
|
26 |
-
#
|
27 |
# frame_count += 1
|
28 |
# results = model.track(im0, verbose=False) # Tracking recommended
|
29 |
# #results = model.predict(im0) # Prediction also supported
|
30 |
# im0 = gym_object.start_counting(im0, results, frame_count)
|
31 |
# video_writer.write(im0)
|
32 |
|
33 |
-
#
|
34 |
# video_writer.release()
|
35 |
-
|
36 |
-
|
37 |
-
from ultralytics import YOLO
|
38 |
-
from ultralytics.solutions import ai_gym
|
39 |
-
import cv2
|
40 |
-
|
41 |
-
model = YOLO("yolov8n-pose.pt")
|
42 |
-
cap = cv2.VideoCapture("pullups.mp4")
|
43 |
-
assert cap.isOpened(), "Error reading video file"
|
44 |
-
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
45 |
-
|
46 |
-
video_writer = cv2.VideoWriter("output_video.avi",
|
47 |
-
cv2.VideoWriter_fourcc(*'mp4v'),
|
48 |
-
fps,
|
49 |
-
(w, h))
|
50 |
-
|
51 |
-
gym_object = ai_gym.AIGym() # init AI GYM module
|
52 |
-
gym_object.set_args(line_thickness=2,
|
53 |
-
view_img=False, # Set view_img to False to prevent displaying the video in real-time
|
54 |
-
pose_type="pushup",
|
55 |
-
kpts_to_check=[6, 8, 10])
|
56 |
-
|
57 |
-
frame_count = 0
|
58 |
-
while cap.isOpened():
|
59 |
-
success, im0 = cap.read()
|
60 |
-
if not success:
|
61 |
-
print("Video frame is empty or video processing has been successfully completed.")
|
62 |
-
break
|
63 |
-
frame_count += 1
|
64 |
-
results = model.track(im0, verbose=False) # Tracking recommended
|
65 |
-
#results = model.predict(im0) # Prediction also supported
|
66 |
-
im0 = gym_object.start_counting(im0, results, frame_count)
|
67 |
-
video_writer.write(im0)
|
68 |
-
|
69 |
-
cap.release()
|
70 |
-
video_writer.release()
|
71 |
-
cv2.destroyAllWindows()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
from ultralytics.solutions import ai_gym
|
4 |
+
import cv2
|
5 |
+
import tempfile
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Initialize YOLO model
|
9 |
+
model = YOLO("yolov8n-pose.pt")
|
10 |
+
|
11 |
+
# Initialize AIGym object
|
12 |
+
gym_object = ai_gym.AIGym()
|
13 |
+
|
14 |
+
def count_workouts(input_video):
|
15 |
+
# Temporary file to store output video
|
16 |
+
output_path = tempfile.NamedTemporaryFile(suffix='.avi').name
|
17 |
+
|
18 |
+
# Open input video
|
19 |
+
cap = cv2.VideoCapture(input_video.name)
|
20 |
+
assert cap.isOpened(), "Error reading video file"
|
21 |
+
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
22 |
+
|
23 |
+
# Initialize video writer for output video
|
24 |
+
video_writer = cv2.VideoWriter(output_path,
|
25 |
+
cv2.VideoWriter_fourcc(*'mp4v'),
|
26 |
+
fps,
|
27 |
+
(w, h))
|
28 |
+
|
29 |
+
frame_count = 0
|
30 |
+
while cap.isOpened():
|
31 |
+
success, im0 = cap.read()
|
32 |
+
if not success:
|
33 |
+
print("Video frame is empty or video processing has been successfully completed.")
|
34 |
+
break
|
35 |
+
frame_count += 1
|
36 |
+
results = model.track(im0, verbose=False) # Tracking recommended
|
37 |
+
im0 = gym_object.start_counting(im0, results, frame_count)
|
38 |
+
video_writer.write(im0)
|
39 |
+
|
40 |
+
cap.release()
|
41 |
+
video_writer.release()
|
42 |
+
cv2.destroyAllWindows()
|
43 |
+
|
44 |
+
return output_path
|
45 |
+
|
46 |
+
# Gradio Interface
|
47 |
+
inputs = gr.inputs.Video(label="Upload a video")
|
48 |
+
outputs = gr.outputs.Video(label="Output Video")
|
49 |
+
|
50 |
+
gr.Interface(count_workouts, inputs, outputs, title="Workout Counter",
|
51 |
+
description="Upload a video and get a video with workout counting annotations.").launch()
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
# from ultralytics import YOLO
|
56 |
+
# from ultralytics.solutions import ai_gym
|
57 |
# import cv2
|
58 |
|
59 |
# model = YOLO("yolov8n-pose.pt")
|
|
|
61 |
# assert cap.isOpened(), "Error reading video file"
|
62 |
# w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
63 |
|
64 |
+
# video_writer = cv2.VideoWriter("output_video.avi",
|
65 |
+
# cv2.VideoWriter_fourcc(*'mp4v'),
|
66 |
+
# fps,
|
67 |
+
# (w, h))
|
68 |
|
69 |
# gym_object = ai_gym.AIGym() # init AI GYM module
|
70 |
# gym_object.set_args(line_thickness=2,
|
71 |
+
# view_img=False, # Set view_img to False to prevent displaying the video in real-time
|
72 |
+
# pose_type="pushup",
|
73 |
# kpts_to_check=[6, 8, 10])
|
74 |
|
75 |
# frame_count = 0
|
76 |
# while cap.isOpened():
|
77 |
# success, im0 = cap.read()
|
78 |
# if not success:
|
79 |
+
# print("Video frame is empty or video processing has been successfully completed.")
|
80 |
+
# break
|
81 |
# frame_count += 1
|
82 |
# results = model.track(im0, verbose=False) # Tracking recommended
|
83 |
# #results = model.predict(im0) # Prediction also supported
|
84 |
# im0 = gym_object.start_counting(im0, results, frame_count)
|
85 |
# video_writer.write(im0)
|
86 |
|
87 |
+
# cap.release()
|
88 |
# video_writer.release()
|
89 |
+
# cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|