import gradio as gr from ultralytics import YOLO from ultralytics.solutions import ai_gym import cv2 import tempfile from PIL import Image import subprocess # Function to upgrade pip def upgrade_pip(): subprocess.run(['pip', 'install', '--upgrade', 'pip']) # Function to process video def process(video_path): upgrade_pip() # Upgrade pip before executing the main function model = YOLO("yolov8n-pose.pt") cap = cv2.VideoCapture(video_path) assert cap.isOpened(), "Error reading video file" w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) temp_dir = tempfile.mkdtemp() # Create a temporary directory to store processed frames video_writer = cv2.VideoWriter("output_video.mp4", cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) gym_object = ai_gym.AIGym() # init AI GYM module gym_object.set_args(line_thickness=2, view_img=False, # Set view_img to False to prevent displaying the video in real-time pose_type="pushup", kpts_to_check=[6, 8, 10]) frame_count = 0 while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break frame_count += 1 if frame_count % 5 == 0: # Process every 5th frame results = model.track(im0, verbose=False) # Tracking recommended im0 = gym_object.start_counting(im0, results, frame_count) # Save processed frame as an image in the temporary directory cv2.imwrite(f"{temp_dir}/{frame_count}.jpg", im0) # Use PIL to create the final video from the processed frames images = [Image.open(f"{temp_dir}/{i}.jpg") for i in range(1, frame_count + 1)] images[0].save("output_video.mp4", save_all=True, append_images=images[1:], duration=1000/fps, loop=0) cap.release() cv2.destroyAllWindows() return "output_video.mp4" # Create the Gradio demo demo = gr.Interface(fn=process, inputs=gr.Video(label='Input Video'), outputs=gr.Video(label='Processed Video')) # Launch the demo! demo.launch(show_api=False)