Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ from ultralytics import YOLO
|
|
8 |
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
|
10 |
# Load the YOLOv8 model
|
11 |
-
model = YOLO('
|
12 |
|
13 |
def process_video(input_video_path):
|
14 |
cap = cv2.VideoCapture(input_video_path)
|
@@ -33,7 +33,7 @@ def process_video(input_video_path):
|
|
33 |
# Convert resized frame to torch tensor and move it to GPU
|
34 |
frame_tensor = torch.from_numpy(resized_frame).permute(2, 0, 1).unsqueeze(0).float() / 255.0
|
35 |
|
36 |
-
threshold = 0.
|
37 |
frame_copy = frame.copy()
|
38 |
results = model(frame_tensor)[0]
|
39 |
for result in results.boxes.data.tolist():
|
|
|
8 |
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
|
10 |
# Load the YOLOv8 model
|
11 |
+
model = YOLO('YOLOv8s.pt')
|
12 |
|
13 |
def process_video(input_video_path):
|
14 |
cap = cv2.VideoCapture(input_video_path)
|
|
|
33 |
# Convert resized frame to torch tensor and move it to GPU
|
34 |
frame_tensor = torch.from_numpy(resized_frame).permute(2, 0, 1).unsqueeze(0).float() / 255.0
|
35 |
|
36 |
+
threshold = 0.2
|
37 |
frame_copy = frame.copy()
|
38 |
results = model(frame_tensor)[0]
|
39 |
for result in results.boxes.data.tolist():
|