frrf / app.py
randomshit11's picture
Update app.py
ff20eb9 verified
raw
history blame
11.8 kB
import os
import streamlit as st
import cv2
import mediapipe as mp
import numpy as np
import math
from tensorflow.keras.models import Model
from tensorflow.keras.layers import (LSTM, Dense, Dropout, Input, Flatten,
Bidirectional, Permute, multiply)
# Load the pose estimation model from Mediapipe
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
# Define the attention block for the LSTM model
def attention_block(inputs, time_steps):
a = Permute((2, 1))(inputs)
a = Dense(time_steps, activation='softmax')(a)
a_probs = Permute((2, 1), name='attention_vec')(a)
output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
return output_attention_mul
# Build and load the LSTM model
@st.cache(allow_output_mutation=True)
def build_model(HIDDEN_UNITS=256, sequence_length=30, num_input_values=33*4, num_classes=3):
inputs = Input(shape=(sequence_length, num_input_values))
lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)
attention_mul = attention_block(lstm_out, sequence_length)
attention_mul = Flatten()(attention_mul)
x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)
x = Dropout(0.5)(x)
x = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=[inputs], outputs=x)
load_dir = "./models/LSTM_Attention.h5"
model.load_weights(load_dir)
return model
# Define the VideoProcessor class for real-time video processing
class VideoProcessor:
def __init__(self):
# Parameters
self.actions = np.array(['curl', 'press', 'squat'])
self.sequence_length = 30
self.colors = [(245,117,16), (117,245,16), (16,117,245)]
self.threshold = threshold3
# Detection variables
self.sequence = []
self.current_action = ''
# Rep counter logic variables
self.curl_counter = 0
self.press_counter = 0
self.squat_counter = 0
self.curl_stage = None
self.press_stage = None
self.squat_stage = None
self.pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
def process_video(self, video_file):
# Get the filename from the file object
filename = "temp_video.mp4"
# Create a temporary file to write the contents of the uploaded video file
with open(filename, 'wb') as temp_file:
temp_file.write(video_file.read())
# Now we can open the video file using cv2.VideoCapture()
cap = cv2.VideoCapture(filename)
output_filename = "processed_video.mp4"
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
out = cv2.VideoWriter(output_filename, cv2.VideoWriter_fourcc(*'mp4v'), 30, (frame_width,frame_height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = self.pose.process(frame_rgb)
processed_frame = self.process_frame(frame, results)
out.write(processed_frame)
cap.release()
out.release()
# Remove the temporary file
os.remove(filename)
return output_filename
def process_frame(self, frame, results):
# Process the frame using the `process` function
processed_frame = self.process(frame)
return processed_frame
def process(self, image):
"""
Function to process the video frame and run the fitness trainer AI
Args:
image (numpy array): input image from the video
Returns:
numpy array: processed image with keypoint detection and fitness activity classification visualized
"""
# Pose detection model
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = pose.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
self.draw_landmarks(image, results)
# Prediction logic
keypoints = self.extract_keypoints(results)
self.sequence.append(keypoints.astype('float32',casting='same_kind'))
self.sequence = self.sequence[-self.sequence_length:]
if len(self.sequence) == self.sequence_length:
res = self.model.predict(np.expand_dims(self.sequence, axis=0), verbose=0)[0]
self.current_action = self.actions[np.argmax(res)]
confidence = np.max(res)
# Erase current action variable if no probability is above threshold
if confidence < self.threshold:
self.current_action = ''
# Viz probabilities
image = self.prob_viz(res, image)
# Count reps
try:
landmarks = results.pose_landmarks.landmark
self.count_reps(image, landmarks, mp_pose)
except:
pass
# Display graphical information
cv2.rectangle(image, (0,0), (640, 40), self.colors[np.argmax(res)], -1)
cv2.putText(image, 'curl ' + str(self.curl_counter), (3,30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(image, 'press ' + str(self.press_counter), (240,30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(image, 'squat ' + str(self.squat_counter), (490,30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
return image
def draw_landmarks(self, image, results):
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2))
return image
def extract_keypoints(self, results):
pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)
return pose
def count_reps(self, image, landmarks, mp_pose):
"""
Counts repetitions of each exercise. Global count and stage (i.e., state) variables are updated within this function.
"""
if self.current_action == 'curl':
# Get coords
shoulder = self.get_coordinates(landmarks, mp_pose, 'left', 'shoulder')
elbow = self.get_coordinates(landmarks, mp_pose, 'left', 'elbow')
wrist = self.get_coordinates(landmarks, mp_pose, 'left', 'wrist')
# calculate elbow angle
angle = self.calculate_angle(shoulder, elbow, wrist)
# curl counter logic
if angle < 30:
self.curl_stage = "up"
if angle > 140 and self.curl_stage =='up':
self.curl_stage="down"
self.curl_counter +=1
self.press_stage = None
self.squat_stage = None
# Viz joint angle
self.viz_joint_angle(image, angle, elbow)
elif self.current_action == 'press':
# Get coords
shoulder = self.get_coordinates(landmarks, mp_pose, 'left', 'shoulder')
elbow = self.get_coordinates(landmarks, mp_pose, 'left', 'elbow')
wrist = self.get_coordinates(landmarks, mp_pose, 'left', 'wrist')
# Calculate elbow angle
elbow_angle = self.calculate_angle(shoulder, elbow, wrist)
# Compute distances between joints
shoulder2elbow_dist = abs(math.dist(shoulder,elbow))
shoulder2wrist_dist = abs(math.dist(shoulder,wrist))
# Press counter logic
if (elbow_angle > 130) and (shoulder2elbow_dist < shoulder2wrist_dist):
self.press_stage = "up"
if (elbow_angle < 50) and (shoulder2elbow_dist > shoulder2wrist_dist) and (self.press_stage =='up'):
self.press_stage='down'
self.press_counter += 1
self.curl_stage = None
self.squat_stage = None
# Viz joint angle
self.viz_joint_angle(image, elbow_angle, elbow)
elif self.current_action == 'squat':
# Get coords
# left side
left_shoulder = self.get_coordinates(landmarks, mp_pose, 'left', 'shoulder')
left_hip = self.get_coordinates(landmarks, mp_pose, 'left', 'hip')
left_knee = self.get_coordinates(landmarks, mp_pose, 'left', 'knee')
left_ankle = self.get_coordinates(landmarks, mp_pose, 'left', 'ankle')
# right side
right_shoulder = self.get_coordinates(landmarks, mp_pose, 'right', 'shoulder')
right_hip = self.get_coordinates(landmarks, mp_pose, 'right', 'hip')
right_knee = self.get_coordinates(landmarks, mp_pose, 'right', 'knee')
right_ankle = self.get_coordinates(landmarks, mp_pose, 'right', 'ankle')
# Calculate knee angles
left_knee_angle = self.calculate_angle(left_hip, left_knee, left_ankle)
right_knee_angle = self.calculate_angle(right_hip, right_knee, right_ankle)
# Calculate hip angles
left_hip_angle = self.calculate_angle(left_shoulder, left_hip, left_knee)
right_hip_angle = self.calculate_angle(right_shoulder, right_hip, right_knee)
# Squat counter logic
thr = 165
if (left_knee_angle < thr) and (right_knee_angle < thr) and (left_hip_angle < thr) and (right_hip_angle < thr):
self.squat_stage = "down"
if (left_knee_angle > thr) and (right_knee_angle > thr) and (left_hip_angle > thr) and (right_hip_angle > thr) and (self.squat_stage =='down'):
self.squat_stage='up'
self.squat_counter += 1
self.curl_stage = None
self.press_stage = None
# Viz joint angles
self.viz_joint_angle(image, left_knee_angle, left_knee)
self.viz_joint_angle(image, left_hip_angle, left_hip)
else:
pass
return
def prob_viz(self, res, input_frame):
"""
This function displays the model prediction probability distribution over the set of exercise classes
as a horizontal bar graph
"""
output_frame = input_frame.copy()
for num, prob in enumerate(res):
cv2.rectangle(output_frame, (0,60+num*40), (int(prob*100), 90+num*40), self.colors[num], -1)
cv2.putText(output_frame, self.actions[num], (0, 85+num*40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.LINE_AA)
return output_frame
# Define Streamlit app
def main():
st.title("Real-time Exercise Detection")
video_file = st.file_uploader("Upload a video file", type=["mp4", "avi"])
if video_file is not None:
video_processor = VideoProcessor()
processed_video_file = video_processor.process_video(video_file)
st.video(processed_video_file)
if __name__ == "__main__":
main()