Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import cv2
|
3 |
import mediapipe as mp
|
@@ -73,6 +148,38 @@ class VideoProcessor:
|
|
73 |
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2))
|
74 |
return image
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# Define Streamlit app
|
77 |
def main():
|
78 |
st.title("Real-time Exercise Detection")
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import cv2
|
3 |
+
# import mediapipe as mp
|
4 |
+
# import numpy as np
|
5 |
+
# import math
|
6 |
+
# from tensorflow.keras.models import Model
|
7 |
+
# from tensorflow.keras.layers import (LSTM, Dense, Dropout, Input, Flatten,
|
8 |
+
# Bidirectional, Permute, multiply)
|
9 |
+
|
10 |
+
# # Load the pose estimation model from Mediapipe
|
11 |
+
# mp_pose = mp.solutions.pose
|
12 |
+
# mp_drawing = mp.solutions.drawing_utils
|
13 |
+
# pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
14 |
+
|
15 |
+
# # Define the attention block for the LSTM model
|
16 |
+
# def attention_block(inputs, time_steps):
|
17 |
+
# a = Permute((2, 1))(inputs)
|
18 |
+
# a = Dense(time_steps, activation='softmax')(a)
|
19 |
+
# a_probs = Permute((2, 1), name='attention_vec')(a)
|
20 |
+
# output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
|
21 |
+
# return output_attention_mul
|
22 |
+
|
23 |
+
# # Build and load the LSTM model
|
24 |
+
# @st.cache(allow_output_mutation=True)
|
25 |
+
# def build_model(HIDDEN_UNITS=256, sequence_length=30, num_input_values=33*4, num_classes=3):
|
26 |
+
# inputs = Input(shape=(sequence_length, num_input_values))
|
27 |
+
# lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)
|
28 |
+
# attention_mul = attention_block(lstm_out, sequence_length)
|
29 |
+
# attention_mul = Flatten()(attention_mul)
|
30 |
+
# x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)
|
31 |
+
# x = Dropout(0.5)(x)
|
32 |
+
# x = Dense(num_classes, activation='softmax')(x)
|
33 |
+
# model = Model(inputs=[inputs], outputs=x)
|
34 |
+
# load_dir = "./models/LSTM_Attention.h5"
|
35 |
+
# model.load_weights(load_dir)
|
36 |
+
# return model
|
37 |
+
|
38 |
+
# # Define the VideoProcessor class for real-time video processing
|
39 |
+
# class VideoProcessor:
|
40 |
+
# def __init__(self):
|
41 |
+
# self.actions = np.array(['curl', 'press', 'squat'])
|
42 |
+
# self.sequence_length = 30
|
43 |
+
# self.colors = [(245,117,16), (117,245,16), (16,117,245)]
|
44 |
+
# self.pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
45 |
+
# self.model = build_model()
|
46 |
+
|
47 |
+
# def process_video(self, video_file):
|
48 |
+
# # Get the filename from the file object
|
49 |
+
# filename = video_file.name
|
50 |
+
# # Create a temporary file to write the contents of the uploaded video file
|
51 |
+
# temp_file = open(filename, 'wb')
|
52 |
+
# temp_file.write(video_file.read())
|
53 |
+
# temp_file.close()
|
54 |
+
# # Now we can open the video file using cv2.VideoCapture()
|
55 |
+
# cap = cv2.VideoCapture(filename)
|
56 |
+
# out_frames = []
|
57 |
+
# while cap.isOpened():
|
58 |
+
# ret, frame = cap.read()
|
59 |
+
# if not ret:
|
60 |
+
# break
|
61 |
+
# frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
62 |
+
# results = self.pose.process(frame_rgb)
|
63 |
+
# frame = self.draw_landmarks(frame, results)
|
64 |
+
# out_frames.append(frame)
|
65 |
+
# cap.release()
|
66 |
+
# # Remove the temporary file
|
67 |
+
# os.remove(filename)
|
68 |
+
# return out_frames
|
69 |
+
|
70 |
+
# def draw_landmarks(self, image, results):
|
71 |
+
# mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
72 |
+
# mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
|
73 |
+
# mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2))
|
74 |
+
# return image
|
75 |
+
|
76 |
import streamlit as st
|
77 |
import cv2
|
78 |
import mediapipe as mp
|
|
|
148 |
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2))
|
149 |
return image
|
150 |
|
151 |
+
@st.cache()
|
152 |
+
def extract_keypoints(self, results):
|
153 |
+
pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)
|
154 |
+
return pose
|
155 |
+
|
156 |
+
@st.cache()
|
157 |
+
def calculate_angle(self, a, b, c):
|
158 |
+
a = np.array(a) # First
|
159 |
+
b = np.array(b) # Mid
|
160 |
+
c = np.array(c) # End
|
161 |
+
radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
|
162 |
+
angle = np.abs(radians*180.0/np.pi)
|
163 |
+
if angle > 180.0:
|
164 |
+
angle = 360-angle
|
165 |
+
return angle
|
166 |
+
|
167 |
+
@st.cache()
|
168 |
+
def get_coordinates(self, landmarks, side, joint):
|
169 |
+
coord = getattr(self.mp_pose.PoseLandmark, side.upper() + "_" + joint.upper())
|
170 |
+
x_coord_val = landmarks[coord.value].x
|
171 |
+
y_coord_val = landmarks[coord.value].y
|
172 |
+
return [x_coord_val, y_coord_val]
|
173 |
+
|
174 |
+
@st.cache()
|
175 |
+
def viz_joint_angle(self, image, angle, joint):
|
176 |
+
cv2.putText(image, str(int(angle)),
|
177 |
+
tuple(np.multiply(joint, [640, 480]).astype(int)),
|
178 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
|
179 |
+
)
|
180 |
+
return
|
181 |
+
|
182 |
+
|
183 |
# Define Streamlit app
|
184 |
def main():
|
185 |
st.title("Real-time Exercise Detection")
|