Spaces:
Sleeping
Sleeping
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import cv2
|
4 |
+
import mediapipe as mp
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
from tensorflow.keras.models import Model
|
8 |
+
from tensorflow.keras.layers import (LSTM, Dense, Dropout, Input, Flatten,
|
9 |
+
Bidirectional, Permute, multiply)
|
10 |
+
|
11 |
+
# Load the pose estimation model from Mediapipe
|
12 |
+
mp_pose = mp.solutions.pose
|
13 |
+
mp_drawing = mp.solutions.drawing_utils
|
14 |
+
pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
15 |
+
|
16 |
+
# Define the attention block for the LSTM model
|
17 |
+
def attention_block(inputs, time_steps):
|
18 |
+
a = Permute((2, 1))(inputs)
|
19 |
+
a = Dense(time_steps, activation='softmax')(a)
|
20 |
+
a_probs = Permute((2, 1), name='attention_vec')(a)
|
21 |
+
output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
|
22 |
+
return output_attention_mul
|
23 |
+
|
24 |
+
# Build and load the LSTM model
|
25 |
+
@st.cache(allow_output_mutation=True)
|
26 |
+
def build_model(HIDDEN_UNITS=256, sequence_length=30, num_input_values=33*4, num_classes=3):
|
27 |
+
inputs = Input(shape=(sequence_length, num_input_values))
|
28 |
+
lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)
|
29 |
+
attention_mul = attention_block(lstm_out, sequence_length)
|
30 |
+
attention_mul = Flatten()(attention_mul)
|
31 |
+
x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)
|
32 |
+
x = Dropout(0.5)(x)
|
33 |
+
x = Dense(num_classes, activation='softmax')(x)
|
34 |
+
model = Model(inputs=[inputs], outputs=x)
|
35 |
+
load_dir = "./models/LSTM_Attention.h5"
|
36 |
+
model.load_weights(load_dir)
|
37 |
+
return model
|
38 |
+
|
39 |
+
# Define the VideoProcessor class for real-time video processing
|
40 |
+
class VideoProcessor:
|
41 |
+
def __init__(self):
|
42 |
+
self.actions = np.array(['curl', 'press', 'squat'])
|
43 |
+
self.sequence_length = 30
|
44 |
+
self.colors = [(245,117,16), (117,245,16), (16,117,245)]
|
45 |
+
self.pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
46 |
+
self.model = build_model()
|
47 |
+
|
48 |
+
def process_video(self, video_file):
|
49 |
+
# Get the filename from the file object
|
50 |
+
filename = video_file.name
|
51 |
+
# Create a temporary file to write the contents of the uploaded video file
|
52 |
+
temp_file = open(filename, 'wb')
|
53 |
+
temp_file.write(video_file.read())
|
54 |
+
temp_file.close()
|
55 |
+
# Now we can open the video file using cv2.VideoCapture()
|
56 |
+
cap = cv2.VideoCapture(filename)
|
57 |
+
out_frames = []
|
58 |
+
while cap.isOpened():
|
59 |
+
ret, frame = cap.read()
|
60 |
+
if not ret:
|
61 |
+
break
|
62 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
63 |
+
results = self.pose.process(frame_rgb)
|
64 |
+
frame = self.draw_landmarks(frame, results)
|
65 |
+
out_frames.append(frame)
|
66 |
+
cap.release()
|
67 |
+
# Remove the temporary file
|
68 |
+
os.remove(filename)
|
69 |
+
return out_frames
|
70 |
+
|
71 |
+
def draw_landmarks(self, image, results):
|
72 |
+
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
73 |
+
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
|
74 |
+
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2))
|
75 |
+
return image
|
76 |
+
|
77 |
+
# Define Streamlit app
|
78 |
+
def main():
|
79 |
+
st.title("Real-time Exercise Detection")
|
80 |
+
video_file = st.file_uploader("Upload a video file", type=["mp4", "avi"])
|
81 |
+
if video_file is not None:
|
82 |
+
st.video(video_file)
|
83 |
+
video_processor = VideoProcessor()
|
84 |
+
frames = video_processor.process_video(video_file)
|
85 |
+
for frame in frames:
|
86 |
+
st.image(frame, channels="BGR")
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
main()
|