Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,189 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import cv2
|
3 |
import mediapipe as mp
|
4 |
-
import math
|
5 |
-
from PIL import Image
|
6 |
import numpy as np
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
def attention_block(inputs, time_steps):
|
10 |
-
"""
|
11 |
-
Attention layer for deep neural network
|
12 |
-
|
13 |
-
"""
|
14 |
-
# Attention weights
|
15 |
a = Permute((2, 1))(inputs)
|
16 |
a = Dense(time_steps, activation='softmax')(a)
|
17 |
-
|
18 |
-
# Attention vector
|
19 |
a_probs = Permute((2, 1), name='attention_vec')(a)
|
20 |
-
|
21 |
-
# Luong's multiplicative score
|
22 |
output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
|
23 |
-
|
24 |
return output_attention_mul
|
25 |
|
|
|
26 |
@st.cache(allow_output_mutation=True)
|
27 |
def build_model(HIDDEN_UNITS=256, sequence_length=30, num_input_values=33*4, num_classes=3):
|
28 |
-
|
29 |
-
# Input
|
30 |
inputs = Input(shape=(sequence_length, num_input_values))
|
31 |
-
# Bi-LSTM
|
32 |
lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)
|
33 |
-
# Attention
|
34 |
attention_mul = attention_block(lstm_out, sequence_length)
|
35 |
attention_mul = Flatten()(attention_mul)
|
36 |
-
# Fully Connected Layer
|
37 |
x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)
|
38 |
x = Dropout(0.5)(x)
|
39 |
-
# Output
|
40 |
x = Dense(num_classes, activation='softmax')(x)
|
41 |
-
# Bring it all together
|
42 |
model = Model(inputs=[inputs], outputs=x)
|
43 |
-
|
44 |
-
## Load Model Weights
|
45 |
load_dir = "./models/LSTM_Attention.h5"
|
46 |
model.load_weights(load_dir)
|
47 |
-
|
48 |
return model
|
49 |
-
|
50 |
-
|
51 |
-
threshold3 = st.slider("Minimum Activity Classification Confidence", 0.00, 1.00, 0.50)
|
52 |
-
## Real Time Machine Learning and Computer Vision Processes
|
53 |
class VideoProcessor:
|
54 |
def __init__(self):
|
55 |
-
# Parameters
|
56 |
self.actions = np.array(['curl', 'press', 'squat'])
|
57 |
self.sequence_length = 30
|
58 |
self.colors = [(245,117,16), (117,245,16), (16,117,245)]
|
59 |
-
self.
|
60 |
-
|
61 |
-
# Detection variables
|
62 |
-
self.sequence = []
|
63 |
-
self.current_action = ''
|
64 |
-
|
65 |
-
# Initialize pose model
|
66 |
-
self.mp_pose = mp.solutions.pose
|
67 |
-
self.mp_drawing = mp.solutions.drawing_utils
|
68 |
-
self.pose = self.mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
69 |
|
70 |
-
|
71 |
-
def draw_landmarks(self, image, results):
|
72 |
-
"""
|
73 |
-
This function draws keypoints and landmarks detected by the human pose estimation model
|
74 |
-
|
75 |
-
"""
|
76 |
-
self.mp_drawing.draw_landmarks(image, results.pose_landmarks, self.mp_pose.POSE_CONNECTIONS,
|
77 |
-
self.mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
|
78 |
-
self.mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2)
|
79 |
-
)
|
80 |
-
return image
|
81 |
-
|
82 |
-
@st.cache()
|
83 |
-
def extract_keypoints(self, results):
|
84 |
-
"""
|
85 |
-
Processes and organizes the keypoints detected from the pose estimation model
|
86 |
-
to be used as inputs for the exercise decoder models
|
87 |
-
|
88 |
-
"""
|
89 |
-
pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)
|
90 |
-
return pose
|
91 |
-
|
92 |
-
@st.cache()
|
93 |
-
def calculate_angle(self, a, b, c):
|
94 |
-
"""
|
95 |
-
Computes 3D joint angle inferred by 3 keypoints and their relative positions to one another
|
96 |
-
|
97 |
-
"""
|
98 |
-
a = np.array(a) # First
|
99 |
-
b = np.array(b) # Mid
|
100 |
-
c = np.array(c) # End
|
101 |
-
|
102 |
-
radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
|
103 |
-
angle = np.abs(radians*180.0/np.pi)
|
104 |
-
|
105 |
-
if angle > 180.0:
|
106 |
-
angle = 360-angle
|
107 |
-
|
108 |
-
return angle
|
109 |
-
|
110 |
-
@st.cache()
|
111 |
-
def get_coordinates(self, landmarks, side, joint):
|
112 |
-
"""
|
113 |
-
Retrieves x and y coordinates of a particular keypoint from the pose estimation model
|
114 |
-
|
115 |
-
Args:
|
116 |
-
landmarks: processed keypoints from the pose estimation model
|
117 |
-
side: 'left' or 'right'. Denotes the side of the body of the landmark of interest.
|
118 |
-
joint: 'shoulder', 'elbow', 'wrist', 'hip', 'knee', or 'ankle'. Denotes which body joint is associated with the landmark of interest.
|
119 |
-
|
120 |
-
"""
|
121 |
-
coord = getattr(self.mp_pose.PoseLandmark, side.upper() + "_" + joint.upper())
|
122 |
-
x_coord_val = landmarks[coord.value].x
|
123 |
-
y_coord_val = landmarks[coord.value].y
|
124 |
-
return [x_coord_val, y_coord_val]
|
125 |
-
|
126 |
-
@st.cache()
|
127 |
-
def viz_joint_angle(self, image, angle, joint):
|
128 |
-
"""
|
129 |
-
Displays the joint angle value near the joint within the image frame
|
130 |
-
|
131 |
-
"""
|
132 |
-
cv2.putText(image, str(int(angle)),
|
133 |
-
tuple(np.multiply(joint, [640, 480]).astype(int)),
|
134 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
|
135 |
-
)
|
136 |
-
return
|
137 |
-
|
138 |
-
@st.cache()
|
139 |
-
def process_video_input(self, threshold1, threshold2, threshold3):
|
140 |
-
"""
|
141 |
-
Processes the video input and performs real-time action recognition and rep counting.
|
142 |
-
|
143 |
-
"""
|
144 |
-
video_file = st.file_uploader("Upload Video", type=["mp4", "avi"])
|
145 |
-
if video_file is None:
|
146 |
-
st.warning("Please upload a video file.")
|
147 |
-
return
|
148 |
-
|
149 |
cap = cv2.VideoCapture(video_file)
|
150 |
-
|
151 |
-
st.error("Error opening video stream or file.")
|
152 |
-
return
|
153 |
-
|
154 |
while cap.isOpened():
|
155 |
ret, frame = cap.read()
|
156 |
if not ret:
|
157 |
break
|
158 |
-
|
159 |
-
# Convert frame to RGB (Mediapipe requires RGB input)
|
160 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
161 |
-
|
162 |
-
# Pose estimation
|
163 |
results = self.pose.process(frame_rgb)
|
164 |
-
|
165 |
-
# Draw landmarks
|
166 |
-
self.draw_landmarks(frame, results)
|
167 |
-
|
168 |
-
# Extract keypoints
|
169 |
-
keypoints = self.extract_keypoints(results)
|
170 |
-
|
171 |
-
# Visualize probabilities
|
172 |
-
if len(self.sequence) == self.sequence_length:
|
173 |
-
sequence = np.array([self.sequence])
|
174 |
-
res = model.predict(sequence)
|
175 |
-
frame = self.prob_viz(res[0], frame)
|
176 |
-
|
177 |
-
# Append frame to output frames
|
178 |
out_frames.append(frame)
|
179 |
-
|
180 |
-
# Release video capture
|
181 |
cap.release()
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
-
# Call the process_video_input method
|
186 |
-
video_processor.process_video_input(threshold1, threshold2, threshold3)
|
187 |
# import streamlit as st
|
188 |
# import cv2
|
189 |
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import cv2
|
3 |
+
# import mediapipe as mp
|
4 |
+
# import math
|
5 |
+
# from PIL import Image
|
6 |
+
# import numpy as np
|
7 |
+
|
8 |
+
# ## Build and Load Model
|
9 |
+
# def attention_block(inputs, time_steps):
|
10 |
+
# """
|
11 |
+
# Attention layer for deep neural network
|
12 |
+
|
13 |
+
# """
|
14 |
+
# # Attention weights
|
15 |
+
# a = Permute((2, 1))(inputs)
|
16 |
+
# a = Dense(time_steps, activation='softmax')(a)
|
17 |
+
|
18 |
+
# # Attention vector
|
19 |
+
# a_probs = Permute((2, 1), name='attention_vec')(a)
|
20 |
+
|
21 |
+
# # Luong's multiplicative score
|
22 |
+
# output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
|
23 |
+
|
24 |
+
# return output_attention_mul
|
25 |
+
|
26 |
+
# @st.cache(allow_output_mutation=True)
|
27 |
+
# def build_model(HIDDEN_UNITS=256, sequence_length=30, num_input_values=33*4, num_classes=3):
|
28 |
+
|
29 |
+
# # Input
|
30 |
+
# inputs = Input(shape=(sequence_length, num_input_values))
|
31 |
+
# # Bi-LSTM
|
32 |
+
# lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)
|
33 |
+
# # Attention
|
34 |
+
# attention_mul = attention_block(lstm_out, sequence_length)
|
35 |
+
# attention_mul = Flatten()(attention_mul)
|
36 |
+
# # Fully Connected Layer
|
37 |
+
# x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)
|
38 |
+
# x = Dropout(0.5)(x)
|
39 |
+
# # Output
|
40 |
+
# x = Dense(num_classes, activation='softmax')(x)
|
41 |
+
# # Bring it all together
|
42 |
+
# model = Model(inputs=[inputs], outputs=x)
|
43 |
+
|
44 |
+
# ## Load Model Weights
|
45 |
+
# load_dir = "./models/LSTM_Attention.h5"
|
46 |
+
# model.load_weights(load_dir)
|
47 |
+
|
48 |
+
# return model
|
49 |
+
# threshold1 = st.slider("Minimum Keypoint Detection Confidence", 0.00, 1.00, 0.50)
|
50 |
+
# threshold2 = st.slider("Minimum Tracking Confidence", 0.00, 1.00, 0.50)
|
51 |
+
# threshold3 = st.slider("Minimum Activity Classification Confidence", 0.00, 1.00, 0.50)
|
52 |
+
# ## Real Time Machine Learning and Computer Vision Processes
|
53 |
+
# class VideoProcessor:
|
54 |
+
# def __init__(self):
|
55 |
+
# # Parameters
|
56 |
+
# self.actions = np.array(['curl', 'press', 'squat'])
|
57 |
+
# self.sequence_length = 30
|
58 |
+
# self.colors = [(245,117,16), (117,245,16), (16,117,245)]
|
59 |
+
# self.threshold = 0.50 # Default threshold for activity classification confidence
|
60 |
+
|
61 |
+
# # Detection variables
|
62 |
+
# self.sequence = []
|
63 |
+
# self.current_action = ''
|
64 |
+
|
65 |
+
# # Initialize pose model
|
66 |
+
# self.mp_pose = mp.solutions.pose
|
67 |
+
# self.mp_drawing = mp.solutions.drawing_utils
|
68 |
+
# self.pose = self.mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
69 |
+
|
70 |
+
# @st.cache()
|
71 |
+
# def draw_landmarks(self, image, results):
|
72 |
+
# """
|
73 |
+
# This function draws keypoints and landmarks detected by the human pose estimation model
|
74 |
+
|
75 |
+
# """
|
76 |
+
# self.mp_drawing.draw_landmarks(image, results.pose_landmarks, self.mp_pose.POSE_CONNECTIONS,
|
77 |
+
# self.mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
|
78 |
+
# self.mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2)
|
79 |
+
# )
|
80 |
+
# return image
|
81 |
+
|
82 |
+
# @st.cache()
|
83 |
+
# def extract_keypoints(self, results):
|
84 |
+
# """
|
85 |
+
# Processes and organizes the keypoints detected from the pose estimation model
|
86 |
+
# to be used as inputs for the exercise decoder models
|
87 |
+
|
88 |
+
# """
|
89 |
+
# pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)
|
90 |
+
# return pose
|
91 |
+
|
92 |
+
# @st.cache()
|
93 |
+
# def calculate_angle(self, a, b, c):
|
94 |
+
# """
|
95 |
+
# Computes 3D joint angle inferred by 3 keypoints and their relative positions to one another
|
96 |
+
|
97 |
+
# """
|
98 |
+
# a = np.array(a) # First
|
99 |
+
# b = np.array(b) # Mid
|
100 |
+
# c = np.array(c) # End
|
101 |
+
|
102 |
+
# radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
|
103 |
+
# angle = np.abs(radians*180.0/np.pi)
|
104 |
+
|
105 |
+
# if angle > 180.0:
|
106 |
+
# angle = 360-angle
|
107 |
+
|
108 |
+
# return angle
|
109 |
+
|
110 |
+
# @st.cache()
|
111 |
+
# def get_coordinates(self, landmarks, side, joint):
|
112 |
+
# """
|
113 |
+
# Retrieves x and y coordinates of a particular keypoint from the pose estimation model
|
114 |
+
|
115 |
+
# Args:
|
116 |
+
# landmarks: processed keypoints from the pose estimation model
|
117 |
+
# side: 'left' or 'right'. Denotes the side of the body of the landmark of interest.
|
118 |
+
# joint: 'shoulder', 'elbow', 'wrist', 'hip', 'knee', or 'ankle'. Denotes which body joint is associated with the landmark of interest.
|
119 |
+
|
120 |
+
# """
|
121 |
+
# coord = getattr(self.mp_pose.PoseLandmark, side.upper() + "_" + joint.upper())
|
122 |
+
# x_coord_val = landmarks[coord.value].x
|
123 |
+
# y_coord_val = landmarks[coord.value].y
|
124 |
+
# return [x_coord_val, y_coord_val]
|
125 |
+
|
126 |
+
# @st.cache()
|
127 |
+
# def viz_joint_angle(self, image, angle, joint):
|
128 |
+
# """
|
129 |
+
# Displays the joint angle value near the joint within the image frame
|
130 |
+
|
131 |
+
# """
|
132 |
+
# cv2.putText(image, str(int(angle)),
|
133 |
+
# tuple(np.multiply(joint, [640, 480]).astype(int)),
|
134 |
+
# cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
|
135 |
+
# )
|
136 |
+
# return
|
137 |
+
|
138 |
+
# @st.cache()
|
139 |
+
# def process_video_input(self, threshold1, threshold2, threshold3):
|
140 |
+
# """
|
141 |
+
# Processes the video input and performs real-time action recognition and rep counting.
|
142 |
+
|
143 |
+
# """
|
144 |
+
# video_file = st.file_uploader("Upload Video", type=["mp4", "avi"])
|
145 |
+
# if video_file is None:
|
146 |
+
# st.warning("Please upload a video file.")
|
147 |
+
# return
|
148 |
+
|
149 |
+
# cap = cv2.VideoCapture(video_file)
|
150 |
+
# if not cap.isOpened():
|
151 |
+
# st.error("Error opening video stream or file.")
|
152 |
+
# return
|
153 |
+
|
154 |
+
# while cap.isOpened():
|
155 |
+
# ret, frame = cap.read()
|
156 |
+
# if not ret:
|
157 |
+
# break
|
158 |
+
|
159 |
+
# # Convert frame to RGB (Mediapipe requires RGB input)
|
160 |
+
# frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
161 |
+
|
162 |
+
# # Pose estimation
|
163 |
+
# results = self.pose.process(frame_rgb)
|
164 |
+
|
165 |
+
# # Draw landmarks
|
166 |
+
# self.draw_landmarks(frame, results)
|
167 |
+
|
168 |
+
# # Extract keypoints
|
169 |
+
# keypoints = self.extract_keypoints(results)
|
170 |
+
|
171 |
+
# # Visualize probabilities
|
172 |
+
# if len(self.sequence) == self.sequence_length:
|
173 |
+
# sequence = np.array([self.sequence])
|
174 |
+
# res = model.predict(sequence)
|
175 |
+
# frame = self.prob_viz(res[0], frame)
|
176 |
+
|
177 |
+
# # Append frame to output frames
|
178 |
+
# out_frames.append(frame)
|
179 |
+
|
180 |
+
# # Release video capture
|
181 |
+
# cap.release()
|
182 |
+
# # # Create an instance of VideoProcessor
|
183 |
+
# # video_processor = VideoProcessor()
|
184 |
+
|
185 |
+
# # # Call the process_video_input method
|
186 |
+
# # video_processor.process_video_input(threshold1, threshold2, threshold3)
|
187 |
+
|
188 |
+
# # Define Streamlit app
|
189 |
+
# def main():
|
190 |
+
# st.title("Real-time Exercise Detection")
|
191 |
+
# video_file = st.file_uploader("Upload a video file", type=["mp4", "avi"])
|
192 |
+
# if video_file is not None:
|
193 |
+
# st.video(video_file)
|
194 |
+
# video_processor = VideoProcessor()
|
195 |
+
# frames = video_processor.process_video(video_file)
|
196 |
+
# for frame in frames:
|
197 |
+
# st.image(frame, channels="BGR")
|
198 |
+
|
199 |
+
# if __name__ == "__main__":
|
200 |
+
# main()
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
import streamlit as st
|
205 |
import cv2
|
206 |
import mediapipe as mp
|
|
|
|
|
207 |
import numpy as np
|
208 |
+
import math
|
209 |
+
from tensorflow.keras.models import Model
|
210 |
+
from tensorflow.keras.layers import (LSTM, Dense, Dropout, Input, Flatten,
|
211 |
+
Bidirectional, Permute, multiply)
|
212 |
|
213 |
+
# Load the pose estimation model from Mediapipe
|
214 |
+
mp_pose = mp.solutions.pose
|
215 |
+
mp_drawing = mp.solutions.drawing_utils
|
216 |
+
pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
217 |
+
|
218 |
+
# Define the attention block for the LSTM model
|
219 |
def attention_block(inputs, time_steps):
|
|
|
|
|
|
|
|
|
|
|
220 |
a = Permute((2, 1))(inputs)
|
221 |
a = Dense(time_steps, activation='softmax')(a)
|
|
|
|
|
222 |
a_probs = Permute((2, 1), name='attention_vec')(a)
|
|
|
|
|
223 |
output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
|
|
|
224 |
return output_attention_mul
|
225 |
|
226 |
+
# Build and load the LSTM model
|
227 |
@st.cache(allow_output_mutation=True)
|
228 |
def build_model(HIDDEN_UNITS=256, sequence_length=30, num_input_values=33*4, num_classes=3):
|
|
|
|
|
229 |
inputs = Input(shape=(sequence_length, num_input_values))
|
|
|
230 |
lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)
|
|
|
231 |
attention_mul = attention_block(lstm_out, sequence_length)
|
232 |
attention_mul = Flatten()(attention_mul)
|
|
|
233 |
x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)
|
234 |
x = Dropout(0.5)(x)
|
|
|
235 |
x = Dense(num_classes, activation='softmax')(x)
|
|
|
236 |
model = Model(inputs=[inputs], outputs=x)
|
|
|
|
|
237 |
load_dir = "./models/LSTM_Attention.h5"
|
238 |
model.load_weights(load_dir)
|
|
|
239 |
return model
|
240 |
+
|
241 |
+
# Define the VideoProcessor class for real-time video processing
|
|
|
|
|
242 |
class VideoProcessor:
|
243 |
def __init__(self):
|
|
|
244 |
self.actions = np.array(['curl', 'press', 'squat'])
|
245 |
self.sequence_length = 30
|
246 |
self.colors = [(245,117,16), (117,245,16), (16,117,245)]
|
247 |
+
self.pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
248 |
+
self.model = build_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
def process_video(self, video_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
cap = cv2.VideoCapture(video_file)
|
252 |
+
out_frames = []
|
|
|
|
|
|
|
253 |
while cap.isOpened():
|
254 |
ret, frame = cap.read()
|
255 |
if not ret:
|
256 |
break
|
|
|
|
|
257 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
|
258 |
results = self.pose.process(frame_rgb)
|
259 |
+
frame = self.draw_landmarks(frame, results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
out_frames.append(frame)
|
|
|
|
|
261 |
cap.release()
|
262 |
+
return out_frames
|
263 |
+
|
264 |
+
def draw_landmarks(self, image, results):
|
265 |
+
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
266 |
+
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
|
267 |
+
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2))
|
268 |
+
return image
|
269 |
+
|
270 |
+
# Define Streamlit app
|
271 |
+
def main():
|
272 |
+
st.title("Real-time Exercise Detection")
|
273 |
+
video_file = st.file_uploader("Upload a video file", type=["mp4", "avi"])
|
274 |
+
if video_file is not None:
|
275 |
+
st.video(video_file)
|
276 |
+
video_processor = VideoProcessor()
|
277 |
+
frames = video_processor.process_video(video_file)
|
278 |
+
for frame in frames:
|
279 |
+
st.image(frame, channels="BGR")
|
280 |
+
|
281 |
+
if __name__ == "__main__":
|
282 |
+
main()
|
283 |
+
|
284 |
+
|
285 |
+
|
286 |
+
|
287 |
|
|
|
|
|
288 |
# import streamlit as st
|
289 |
# import cv2
|
290 |
|