Spaces:
Runtime error
Runtime error
Delete Exercise_Recognition_AI-main
Browse files- Exercise_Recognition_AI-main/.dockerignore +0 -14
- Exercise_Recognition_AI-main/.github/workflows/CI.yml +0 -24
- Exercise_Recognition_AI-main/.gitignore +0 -11
- Exercise_Recognition_AI-main/Dockerfile +0 -9
- Exercise_Recognition_AI-main/ExerciseDecoder.ipynb +0 -0
- Exercise_Recognition_AI-main/app.py +0 -378
- Exercise_Recognition_AI-main/environment.yml +0 -266
- Exercise_Recognition_AI-main/main.py +0 -324
- Exercise_Recognition_AI-main/models/LSTM.h5 +0 -3
- Exercise_Recognition_AI-main/models/LSTM_Attention.h5 +0 -3
- Exercise_Recognition_AI-main/pose_tracking_full_body_landmarks.png +0 -0
- Exercise_Recognition_AI-main/test.py +0 -3
- Exercise_Recognition_AI-main/tests/feature_engineering.ipynb +0 -295
Exercise_Recognition_AI-main/.dockerignore
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
.git
|
2 |
-
.ipynb_checkpoints
|
3 |
-
data
|
4 |
-
logs
|
5 |
-
old
|
6 |
-
research
|
7 |
-
tests
|
8 |
-
LICENSE
|
9 |
-
README.md
|
10 |
-
*.mp4
|
11 |
-
*.png
|
12 |
-
*.h5
|
13 |
-
!models/*.h5
|
14 |
-
.gitignore
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Exercise_Recognition_AI-main/.github/workflows/CI.yml
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
name: Build Docker image and deploy to Heroku
|
2 |
-
on:
|
3 |
-
# Trigger the workflow on push or pull request,
|
4 |
-
# but only for the main branch
|
5 |
-
push:
|
6 |
-
branches:
|
7 |
-
- main
|
8 |
-
jobs:
|
9 |
-
build:
|
10 |
-
runs-on: ubuntu-latest
|
11 |
-
steps:
|
12 |
-
- uses: actions/checkout@v1
|
13 |
-
- name: Login to Heroku Container registry
|
14 |
-
env:
|
15 |
-
HEROKU_API_KEY: ${{ secrets.HEROKU_API_KEY }}
|
16 |
-
run: heroku container:login
|
17 |
-
- name: Build and push
|
18 |
-
env:
|
19 |
-
HEROKU_API_KEY: ${{ secrets.HEROKU_API_KEY }}
|
20 |
-
run: heroku container:push -a ai-personal-fitness-trainer web
|
21 |
-
- name: Release
|
22 |
-
env:
|
23 |
-
HEROKU_API_KEY: ${{ secrets.HEROKU_API_KEY }}
|
24 |
-
run: heroku container:release -a ai-personal-fitness-trainer web
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Exercise_Recognition_AI-main/.gitignore
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
*.egg-info
|
2 |
-
*.pyc
|
3 |
-
data
|
4 |
-
old
|
5 |
-
logs
|
6 |
-
.ipynb_checkpoints
|
7 |
-
*.h5
|
8 |
-
!models/*.h5
|
9 |
-
env
|
10 |
-
*.avi
|
11 |
-
*.mp4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Exercise_Recognition_AI-main/Dockerfile
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
FROM python:3.8
|
2 |
-
EXPOSE 8501
|
3 |
-
WORKDIR /app
|
4 |
-
COPY requirements.txt ./requirements.txt
|
5 |
-
RUN apt-get update
|
6 |
-
RUN apt-get install ffmpeg libsm6 libxext6 -y
|
7 |
-
RUN pip3 install -r requirements.txt
|
8 |
-
COPY . .
|
9 |
-
CMD streamlit run --server.port $PORT app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Exercise_Recognition_AI-main/ExerciseDecoder.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Exercise_Recognition_AI-main/app.py
DELETED
@@ -1,378 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import cv2
|
3 |
-
|
4 |
-
from tensorflow.keras.models import Model
|
5 |
-
from tensorflow.keras.layers import (LSTM, Dense, Dropout, Input, Flatten,
|
6 |
-
Bidirectional, Permute, multiply)
|
7 |
-
|
8 |
-
import numpy as np
|
9 |
-
import mediapipe as mp
|
10 |
-
import math
|
11 |
-
|
12 |
-
from streamlit_webrtc import webrtc_streamer, WebRtcMode, RTCConfiguration
|
13 |
-
import av
|
14 |
-
|
15 |
-
## Build and Load Model
|
16 |
-
def attention_block(inputs, time_steps):
|
17 |
-
"""
|
18 |
-
Attention layer for deep neural network
|
19 |
-
|
20 |
-
"""
|
21 |
-
# Attention weights
|
22 |
-
a = Permute((2, 1))(inputs)
|
23 |
-
a = Dense(time_steps, activation='softmax')(a)
|
24 |
-
|
25 |
-
# Attention vector
|
26 |
-
a_probs = Permute((2, 1), name='attention_vec')(a)
|
27 |
-
|
28 |
-
# Luong's multiplicative score
|
29 |
-
output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
|
30 |
-
|
31 |
-
return output_attention_mul
|
32 |
-
|
33 |
-
@st.cache(allow_output_mutation=True)
|
34 |
-
def build_model(HIDDEN_UNITS=256, sequence_length=30, num_input_values=33*4, num_classes=3):
|
35 |
-
"""
|
36 |
-
Function used to build the deep neural network model on startup
|
37 |
-
|
38 |
-
Args:
|
39 |
-
HIDDEN_UNITS (int, optional): Number of hidden units for each neural network hidden layer. Defaults to 256.
|
40 |
-
sequence_length (int, optional): Input sequence length (i.e., number of frames). Defaults to 30.
|
41 |
-
num_input_values (_type_, optional): Input size of the neural network model. Defaults to 33*4 (i.e., number of keypoints x number of metrics).
|
42 |
-
num_classes (int, optional): Number of classification categories (i.e., model output size). Defaults to 3.
|
43 |
-
|
44 |
-
Returns:
|
45 |
-
keras model: neural network with pre-trained weights
|
46 |
-
"""
|
47 |
-
# Input
|
48 |
-
inputs = Input(shape=(sequence_length, num_input_values))
|
49 |
-
# Bi-LSTM
|
50 |
-
lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)
|
51 |
-
# Attention
|
52 |
-
attention_mul = attention_block(lstm_out, sequence_length)
|
53 |
-
attention_mul = Flatten()(attention_mul)
|
54 |
-
# Fully Connected Layer
|
55 |
-
x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)
|
56 |
-
x = Dropout(0.5)(x)
|
57 |
-
# Output
|
58 |
-
x = Dense(num_classes, activation='softmax')(x)
|
59 |
-
# Bring it all together
|
60 |
-
model = Model(inputs=[inputs], outputs=x)
|
61 |
-
|
62 |
-
## Load Model Weights
|
63 |
-
load_dir = "./models/LSTM_Attention.h5"
|
64 |
-
model.load_weights(load_dir)
|
65 |
-
|
66 |
-
return model
|
67 |
-
|
68 |
-
HIDDEN_UNITS = 256
|
69 |
-
model = build_model(HIDDEN_UNITS)
|
70 |
-
|
71 |
-
## App
|
72 |
-
st.write("# AI Personal Fitness Trainer Web App")
|
73 |
-
|
74 |
-
st.markdown("❗❗ **Development Note** ❗❗")
|
75 |
-
st.markdown("Currently, the exercise recognition model uses the the x, y, and z coordinates of each anatomical landmark from the MediaPipe Pose model. These coordinates are normalized with respect to the image frame (e.g., the top left corner represents (x=0,y=0) and the bottom right corner represents(x=1,y=1)).")
|
76 |
-
st.markdown("I'm currently developing and testing two new feature engineering strategies:")
|
77 |
-
st.markdown("- Normalizing coordinates by the detected bounding box of the user")
|
78 |
-
st.markdown("- Using joint angles rather than keypoint coordaintes as features")
|
79 |
-
st.write("Stay Tuned!")
|
80 |
-
|
81 |
-
st.write("## Settings")
|
82 |
-
threshold1 = st.slider("Minimum Keypoint Detection Confidence", 0.00, 1.00, 0.50)
|
83 |
-
threshold2 = st.slider("Minimum Tracking Confidence", 0.00, 1.00, 0.50)
|
84 |
-
threshold3 = st.slider("Minimum Activity Classification Confidence", 0.00, 1.00, 0.50)
|
85 |
-
|
86 |
-
st.write("## Activate the AI 🤖🏋️♂️")
|
87 |
-
|
88 |
-
## Mediapipe
|
89 |
-
mp_pose = mp.solutions.pose # Pre-trained pose estimation model from Google Mediapipe
|
90 |
-
mp_drawing = mp.solutions.drawing_utils # Supported Mediapipe visualization tools
|
91 |
-
pose = mp_pose.Pose(min_detection_confidence=threshold1, min_tracking_confidence=threshold2) # mediapipe pose model
|
92 |
-
|
93 |
-
## Real Time Machine Learning and Computer Vision Processes
|
94 |
-
class VideoProcessor:
|
95 |
-
def __init__(self):
|
96 |
-
# Parameters
|
97 |
-
self.actions = np.array(['curl', 'press', 'squat'])
|
98 |
-
self.sequence_length = 30
|
99 |
-
self.colors = [(245,117,16), (117,245,16), (16,117,245)]
|
100 |
-
self.threshold = threshold3
|
101 |
-
|
102 |
-
# Detection variables
|
103 |
-
self.sequence = []
|
104 |
-
self.current_action = ''
|
105 |
-
|
106 |
-
# Rep counter logic variables
|
107 |
-
self.curl_counter = 0
|
108 |
-
self.press_counter = 0
|
109 |
-
self.squat_counter = 0
|
110 |
-
self.curl_stage = None
|
111 |
-
self.press_stage = None
|
112 |
-
self.squat_stage = None
|
113 |
-
|
114 |
-
@st.cache()
|
115 |
-
def draw_landmarks(self, image, results):
|
116 |
-
"""
|
117 |
-
This function draws keypoints and landmarks detected by the human pose estimation model
|
118 |
-
|
119 |
-
"""
|
120 |
-
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
121 |
-
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
|
122 |
-
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2)
|
123 |
-
)
|
124 |
-
return
|
125 |
-
|
126 |
-
@st.cache()
|
127 |
-
def extract_keypoints(self, results):
|
128 |
-
"""
|
129 |
-
Processes and organizes the keypoints detected from the pose estimation model
|
130 |
-
to be used as inputs for the exercise decoder models
|
131 |
-
|
132 |
-
"""
|
133 |
-
pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)
|
134 |
-
return pose
|
135 |
-
|
136 |
-
@st.cache()
|
137 |
-
def calculate_angle(self, a,b,c):
|
138 |
-
"""
|
139 |
-
Computes 3D joint angle inferred by 3 keypoints and their relative positions to one another
|
140 |
-
|
141 |
-
"""
|
142 |
-
a = np.array(a) # First
|
143 |
-
b = np.array(b) # Mid
|
144 |
-
c = np.array(c) # End
|
145 |
-
|
146 |
-
radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
|
147 |
-
angle = np.abs(radians*180.0/np.pi)
|
148 |
-
|
149 |
-
if angle > 180.0:
|
150 |
-
angle = 360-angle
|
151 |
-
|
152 |
-
return angle
|
153 |
-
|
154 |
-
@st.cache()
|
155 |
-
def get_coordinates(self, landmarks, mp_pose, side, joint):
|
156 |
-
"""
|
157 |
-
Retrieves x and y coordinates of a particular keypoint from the pose estimation model
|
158 |
-
|
159 |
-
Args:
|
160 |
-
landmarks: processed keypoints from the pose estimation model
|
161 |
-
mp_pose: Mediapipe pose estimation model
|
162 |
-
side: 'left' or 'right'. Denotes the side of the body of the landmark of interest.
|
163 |
-
joint: 'shoulder', 'elbow', 'wrist', 'hip', 'knee', or 'ankle'. Denotes which body joint is associated with the landmark of interest.
|
164 |
-
|
165 |
-
"""
|
166 |
-
coord = getattr(mp_pose.PoseLandmark,side.upper()+"_"+joint.upper())
|
167 |
-
x_coord_val = landmarks[coord.value].x
|
168 |
-
y_coord_val = landmarks[coord.value].y
|
169 |
-
return [x_coord_val, y_coord_val]
|
170 |
-
|
171 |
-
@st.cache()
|
172 |
-
def viz_joint_angle(self, image, angle, joint):
|
173 |
-
"""
|
174 |
-
Displays the joint angle value near the joint within the image frame
|
175 |
-
|
176 |
-
"""
|
177 |
-
cv2.putText(image, str(int(angle)),
|
178 |
-
tuple(np.multiply(joint, [640, 480]).astype(int)),
|
179 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
|
180 |
-
)
|
181 |
-
return
|
182 |
-
|
183 |
-
@st.cache()
|
184 |
-
def count_reps(self, image, landmarks, mp_pose):
|
185 |
-
"""
|
186 |
-
Counts repetitions of each exercise. Global count and stage (i.e., state) variables are updated within this function.
|
187 |
-
|
188 |
-
"""
|
189 |
-
|
190 |
-
if self.current_action == 'curl':
|
191 |
-
# Get coords
|
192 |
-
shoulder = self.get_coordinates(landmarks, mp_pose, 'left', 'shoulder')
|
193 |
-
elbow = self.get_coordinates(landmarks, mp_pose, 'left', 'elbow')
|
194 |
-
wrist = self.get_coordinates(landmarks, mp_pose, 'left', 'wrist')
|
195 |
-
|
196 |
-
# calculate elbow angle
|
197 |
-
angle = self.calculate_angle(shoulder, elbow, wrist)
|
198 |
-
|
199 |
-
# curl counter logic
|
200 |
-
if angle < 30:
|
201 |
-
self.curl_stage = "up"
|
202 |
-
if angle > 140 and self.curl_stage =='up':
|
203 |
-
self.curl_stage="down"
|
204 |
-
self.curl_counter +=1
|
205 |
-
self.press_stage = None
|
206 |
-
self.squat_stage = None
|
207 |
-
|
208 |
-
# Viz joint angle
|
209 |
-
self.viz_joint_angle(image, angle, elbow)
|
210 |
-
|
211 |
-
elif self.current_action == 'press':
|
212 |
-
# Get coords
|
213 |
-
shoulder = self.get_coordinates(landmarks, mp_pose, 'left', 'shoulder')
|
214 |
-
elbow = self.get_coordinates(landmarks, mp_pose, 'left', 'elbow')
|
215 |
-
wrist = self.get_coordinates(landmarks, mp_pose, 'left', 'wrist')
|
216 |
-
|
217 |
-
# Calculate elbow angle
|
218 |
-
elbow_angle = self.calculate_angle(shoulder, elbow, wrist)
|
219 |
-
|
220 |
-
# Compute distances between joints
|
221 |
-
shoulder2elbow_dist = abs(math.dist(shoulder,elbow))
|
222 |
-
shoulder2wrist_dist = abs(math.dist(shoulder,wrist))
|
223 |
-
|
224 |
-
# Press counter logic
|
225 |
-
if (elbow_angle > 130) and (shoulder2elbow_dist < shoulder2wrist_dist):
|
226 |
-
self.press_stage = "up"
|
227 |
-
if (elbow_angle < 50) and (shoulder2elbow_dist > shoulder2wrist_dist) and (self.press_stage =='up'):
|
228 |
-
self.press_stage='down'
|
229 |
-
self.press_counter += 1
|
230 |
-
self.curl_stage = None
|
231 |
-
self.squat_stage = None
|
232 |
-
|
233 |
-
# Viz joint angle
|
234 |
-
self.viz_joint_angle(image, elbow_angle, elbow)
|
235 |
-
|
236 |
-
elif self.current_action == 'squat':
|
237 |
-
# Get coords
|
238 |
-
# left side
|
239 |
-
left_shoulder = self.get_coordinates(landmarks, mp_pose, 'left', 'shoulder')
|
240 |
-
left_hip = self.get_coordinates(landmarks, mp_pose, 'left', 'hip')
|
241 |
-
left_knee = self.get_coordinates(landmarks, mp_pose, 'left', 'knee')
|
242 |
-
left_ankle = self.get_coordinates(landmarks, mp_pose, 'left', 'ankle')
|
243 |
-
# right side
|
244 |
-
right_shoulder = self.get_coordinates(landmarks, mp_pose, 'right', 'shoulder')
|
245 |
-
right_hip = self.get_coordinates(landmarks, mp_pose, 'right', 'hip')
|
246 |
-
right_knee = self.get_coordinates(landmarks, mp_pose, 'right', 'knee')
|
247 |
-
right_ankle = self.get_coordinates(landmarks, mp_pose, 'right', 'ankle')
|
248 |
-
|
249 |
-
# Calculate knee angles
|
250 |
-
left_knee_angle = self.calculate_angle(left_hip, left_knee, left_ankle)
|
251 |
-
right_knee_angle = self.calculate_angle(right_hip, right_knee, right_ankle)
|
252 |
-
|
253 |
-
# Calculate hip angles
|
254 |
-
left_hip_angle = self.calculate_angle(left_shoulder, left_hip, left_knee)
|
255 |
-
right_hip_angle = self.calculate_angle(right_shoulder, right_hip, right_knee)
|
256 |
-
|
257 |
-
# Squat counter logic
|
258 |
-
thr = 165
|
259 |
-
if (left_knee_angle < thr) and (right_knee_angle < thr) and (left_hip_angle < thr) and (right_hip_angle < thr):
|
260 |
-
self.squat_stage = "down"
|
261 |
-
if (left_knee_angle > thr) and (right_knee_angle > thr) and (left_hip_angle > thr) and (right_hip_angle > thr) and (self.squat_stage =='down'):
|
262 |
-
self.squat_stage='up'
|
263 |
-
self.squat_counter += 1
|
264 |
-
self.curl_stage = None
|
265 |
-
self.press_stage = None
|
266 |
-
|
267 |
-
# Viz joint angles
|
268 |
-
self.viz_joint_angle(image, left_knee_angle, left_knee)
|
269 |
-
self.viz_joint_angle(image, left_hip_angle, left_hip)
|
270 |
-
|
271 |
-
else:
|
272 |
-
pass
|
273 |
-
return
|
274 |
-
|
275 |
-
@st.cache()
|
276 |
-
def prob_viz(self, res, input_frame):
|
277 |
-
"""
|
278 |
-
This function displays the model prediction probability distribution over the set of exercise classes
|
279 |
-
as a horizontal bar graph
|
280 |
-
|
281 |
-
"""
|
282 |
-
output_frame = input_frame.copy()
|
283 |
-
for num, prob in enumerate(res):
|
284 |
-
cv2.rectangle(output_frame, (0,60+num*40), (int(prob*100), 90+num*40), self.colors[num], -1)
|
285 |
-
cv2.putText(output_frame, self.actions[num], (0, 85+num*40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.LINE_AA)
|
286 |
-
|
287 |
-
return output_frame
|
288 |
-
|
289 |
-
@st.cache()
|
290 |
-
def process(self, image):
|
291 |
-
"""
|
292 |
-
Function to process the video frame from the user's webcam and run the fitness trainer AI
|
293 |
-
|
294 |
-
Args:
|
295 |
-
image (numpy array): input image from the webcam
|
296 |
-
|
297 |
-
Returns:
|
298 |
-
numpy array: processed image with keypoint detection and fitness activity classification visualized
|
299 |
-
"""
|
300 |
-
# Pose detection model
|
301 |
-
image.flags.writeable = False
|
302 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
303 |
-
results = pose.process(image)
|
304 |
-
|
305 |
-
# Draw the hand annotations on the image.
|
306 |
-
image.flags.writeable = True
|
307 |
-
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
308 |
-
self.draw_landmarks(image, results)
|
309 |
-
|
310 |
-
# Prediction logic
|
311 |
-
keypoints = self.extract_keypoints(results)
|
312 |
-
self.sequence.append(keypoints.astype('float32',casting='same_kind'))
|
313 |
-
self.sequence = self.sequence[-self.sequence_length:]
|
314 |
-
|
315 |
-
if len(self.sequence) == self.sequence_length:
|
316 |
-
res = model.predict(np.expand_dims(self.sequence, axis=0), verbose=0)[0]
|
317 |
-
# interpreter.set_tensor(self.input_details[0]['index'], np.expand_dims(self.sequence, axis=0))
|
318 |
-
# interpreter.invoke()
|
319 |
-
# res = interpreter.get_tensor(self.output_details[0]['index'])
|
320 |
-
|
321 |
-
self.current_action = self.actions[np.argmax(res)]
|
322 |
-
confidence = np.max(res)
|
323 |
-
|
324 |
-
# Erase current action variable if no probability is above threshold
|
325 |
-
if confidence < self.threshold:
|
326 |
-
self.current_action = ''
|
327 |
-
|
328 |
-
# Viz probabilities
|
329 |
-
image = self.prob_viz(res, image)
|
330 |
-
|
331 |
-
# Count reps
|
332 |
-
try:
|
333 |
-
landmarks = results.pose_landmarks.landmark
|
334 |
-
self.count_reps(
|
335 |
-
image, landmarks, mp_pose)
|
336 |
-
except:
|
337 |
-
pass
|
338 |
-
|
339 |
-
# Display graphical information
|
340 |
-
cv2.rectangle(image, (0,0), (640, 40), self.colors[np.argmax(res)], -1)
|
341 |
-
cv2.putText(image, 'curl ' + str(self.curl_counter), (3,30),
|
342 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
343 |
-
cv2.putText(image, 'press ' + str(self.press_counter), (240,30),
|
344 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
345 |
-
cv2.putText(image, 'squat ' + str(self.squat_counter), (490,30),
|
346 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
347 |
-
|
348 |
-
# return cv2.flip(image, 1)
|
349 |
-
return image
|
350 |
-
|
351 |
-
def recv(self, frame):
|
352 |
-
"""
|
353 |
-
Receive and process video stream from webcam
|
354 |
-
|
355 |
-
Args:
|
356 |
-
frame: current video frame
|
357 |
-
|
358 |
-
Returns:
|
359 |
-
av.VideoFrame: processed video frame
|
360 |
-
"""
|
361 |
-
img = frame.to_ndarray(format="bgr24")
|
362 |
-
img = self.process(img)
|
363 |
-
return av.VideoFrame.from_ndarray(img, format="bgr24")
|
364 |
-
|
365 |
-
## Stream Webcam Video and Run Model
|
366 |
-
# Options
|
367 |
-
RTC_CONFIGURATION = RTCConfiguration(
|
368 |
-
{"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
|
369 |
-
)
|
370 |
-
# Streamer
|
371 |
-
webrtc_ctx = webrtc_streamer(
|
372 |
-
key="AI trainer",
|
373 |
-
mode=WebRtcMode.SENDRECV,
|
374 |
-
rtc_configuration=RTC_CONFIGURATION,
|
375 |
-
media_stream_constraints={"video": True, "audio": False},
|
376 |
-
video_processor_factory=VideoProcessor,
|
377 |
-
async_processing=True,
|
378 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Exercise_Recognition_AI-main/environment.yml
DELETED
@@ -1,266 +0,0 @@
|
|
1 |
-
name: AItrainer
|
2 |
-
channels:
|
3 |
-
- conda-forge
|
4 |
-
- anaconda
|
5 |
-
- soumith
|
6 |
-
- defaults
|
7 |
-
dependencies:
|
8 |
-
- _tflow_select=2.3.0=gpu
|
9 |
-
- aiohttp=3.8.1=py38h294d835_1
|
10 |
-
- aiosignal=1.2.0=pyhd8ed1ab_0
|
11 |
-
- alabaster=0.7.12=pyhd3eb1b0_0
|
12 |
-
- appdirs=1.4.4=pyhd3eb1b0_0
|
13 |
-
- argon2-cffi=21.3.0=pyhd3eb1b0_0
|
14 |
-
- argon2-cffi-bindings=21.2.0=py38h2bbff1b_0
|
15 |
-
- arrow=1.2.2=pyhd3eb1b0_0
|
16 |
-
- astor=0.8.1=pyh9f0ad1d_0
|
17 |
-
- astroid=2.9.0=py38haa95532_0
|
18 |
-
- asttokens=2.0.5=pyhd3eb1b0_0
|
19 |
-
- astunparse=1.6.3=pyhd8ed1ab_0
|
20 |
-
- async-timeout=4.0.2=pyhd8ed1ab_0
|
21 |
-
- atomicwrites=1.4.0=py_0
|
22 |
-
- attrs=21.4.0=pyhd3eb1b0_0
|
23 |
-
- autopep8=1.5.6=pyhd3eb1b0_0
|
24 |
-
- babel=2.9.1=pyhd3eb1b0_0
|
25 |
-
- backcall=0.2.0=pyhd3eb1b0_0
|
26 |
-
- bcrypt=3.2.0=py38he774522_0
|
27 |
-
- beautifulsoup4=4.11.1=py38haa95532_0
|
28 |
-
- binaryornot=0.4.4=pyhd3eb1b0_1
|
29 |
-
- black=19.10b0=py_0
|
30 |
-
- blas=1.0=mkl
|
31 |
-
- bleach=4.1.0=pyhd3eb1b0_0
|
32 |
-
- blinker=1.4=py_1
|
33 |
-
- brotlipy=0.7.0=py38h2bbff1b_1003
|
34 |
-
- ca-certificates=2022.6.15=h5b45459_0
|
35 |
-
- cachetools=5.0.0=pyhd8ed1ab_0
|
36 |
-
- certifi=2022.6.15=py38haa244fe_0
|
37 |
-
- cffi=1.15.0=py38h2bbff1b_1
|
38 |
-
- chardet=4.0.0=py38haa95532_1003
|
39 |
-
- charset-normalizer=2.0.4=pyhd3eb1b0_0
|
40 |
-
- click=8.0.4=py38haa95532_0
|
41 |
-
- cloudpickle=2.0.0=pyhd3eb1b0_0
|
42 |
-
- colorama=0.4.4=pyhd3eb1b0_0
|
43 |
-
- cookiecutter=1.7.3=pyhd3eb1b0_0
|
44 |
-
- cryptography=37.0.1=py38h21b164f_0
|
45 |
-
- debugpy=1.5.1=py38hd77b12b_0
|
46 |
-
- decorator=5.1.1=pyhd3eb1b0_0
|
47 |
-
- defusedxml=0.7.1=pyhd3eb1b0_0
|
48 |
-
- diff-match-patch=20200713=pyhd3eb1b0_0
|
49 |
-
- docutils=0.17.1=py38haa95532_1
|
50 |
-
- eigen=3.3.7=h59b6b97_1
|
51 |
-
- entrypoints=0.4=py38haa95532_0
|
52 |
-
- executing=0.8.3=pyhd3eb1b0_0
|
53 |
-
- flake8=3.9.0=pyhd3eb1b0_0
|
54 |
-
- frozenlist=1.3.0=py38h294d835_1
|
55 |
-
- future=0.18.2=py38_1
|
56 |
-
- gast=0.4.0=pyh9f0ad1d_0
|
57 |
-
- glib=2.69.1=h5dc1a3c_1
|
58 |
-
- google-auth=2.8.0=pyh6c4a22f_0
|
59 |
-
- google-auth-oauthlib=0.4.6=pyhd8ed1ab_0
|
60 |
-
- google-pasta=0.2.0=pyh8c360ce_0
|
61 |
-
- gst-plugins-base=1.18.5=h9e645db_0
|
62 |
-
- gstreamer=1.18.5=hd78058f_0
|
63 |
-
- h5py=2.10.0=py38h5e291fa_0
|
64 |
-
- hdf5=1.10.4=h7ebc959_0
|
65 |
-
- icc_rt=2019.0.0=h0cc432a_1
|
66 |
-
- icu=58.2=ha925a31_3
|
67 |
-
- idna=3.3=pyhd3eb1b0_0
|
68 |
-
- imagesize=1.3.0=pyhd3eb1b0_0
|
69 |
-
- importlib-metadata=4.11.3=py38haa95532_0
|
70 |
-
- importlib_metadata=4.11.3=hd3eb1b0_0
|
71 |
-
- importlib_resources=5.2.0=pyhd3eb1b0_1
|
72 |
-
- inflection=0.5.1=py38haa95532_0
|
73 |
-
- intel-openmp=2021.4.0=haa95532_3556
|
74 |
-
- intervaltree=3.1.0=pyhd3eb1b0_0
|
75 |
-
- ipykernel=6.9.1=py38haa95532_0
|
76 |
-
- ipython=8.3.0=py38haa95532_0
|
77 |
-
- ipython_genutils=0.2.0=pyhd3eb1b0_1
|
78 |
-
- isort=5.9.3=pyhd3eb1b0_0
|
79 |
-
- jedi=0.17.2=py38haa95532_1
|
80 |
-
- jinja2=3.0.3=pyhd3eb1b0_0
|
81 |
-
- jinja2-time=0.2.0=pyhd3eb1b0_3
|
82 |
-
- joblib=1.1.0=pyhd3eb1b0_0
|
83 |
-
- jpeg=9e=h2bbff1b_0
|
84 |
-
- jsonschema=4.4.0=py38haa95532_0
|
85 |
-
- jupyter_client=7.2.2=py38haa95532_0
|
86 |
-
- jupyter_core=4.10.0=py38haa95532_0
|
87 |
-
- jupyterlab_pygments=0.1.2=py_0
|
88 |
-
- keras-applications=1.0.8=py_1
|
89 |
-
- keras-preprocessing=1.1.2=pyhd8ed1ab_0
|
90 |
-
- keyring=23.4.0=py38haa95532_0
|
91 |
-
- lazy-object-proxy=1.6.0=py38h2bbff1b_0
|
92 |
-
- libblas=3.9.0=1_h8933c1f_netlib
|
93 |
-
- libcblas=3.9.0=5_hd5c7e75_netlib
|
94 |
-
- libffi=3.4.2=hd77b12b_4
|
95 |
-
- libiconv=1.16=h2bbff1b_2
|
96 |
-
- liblapack=3.9.0=5_hd5c7e75_netlib
|
97 |
-
- libogg=1.3.5=h2bbff1b_1
|
98 |
-
- libopencv=4.0.1=hbb9e17c_0
|
99 |
-
- libpng=1.6.37=h2a8f88b_0
|
100 |
-
- libprotobuf=3.20.1=h23ce68f_0
|
101 |
-
- libspatialindex=1.9.3=h6c2663c_0
|
102 |
-
- libtiff=4.2.0=he0120a3_1
|
103 |
-
- libvorbis=1.3.7=he774522_0
|
104 |
-
- libwebp-base=1.2.2=h2bbff1b_0
|
105 |
-
- lz4-c=1.9.3=h2bbff1b_1
|
106 |
-
- m2w64-gcc-libgfortran=5.3.0=6
|
107 |
-
- m2w64-gcc-libs=5.3.0=7
|
108 |
-
- m2w64-gcc-libs-core=5.3.0=7
|
109 |
-
- m2w64-gmp=6.1.0=2
|
110 |
-
- m2w64-libwinpthread-git=5.0.0.4634.697f757=2
|
111 |
-
- markdown=3.3.7=pyhd8ed1ab_0
|
112 |
-
- markupsafe=2.1.1=py38h2bbff1b_0
|
113 |
-
- matplotlib-inline=0.1.2=pyhd3eb1b0_2
|
114 |
-
- mccabe=0.6.1=py38_1
|
115 |
-
- mistune=0.8.4=py38he774522_1000
|
116 |
-
- msys2-conda-epoch=20160418=1
|
117 |
-
- multidict=6.0.2=py38h294d835_1
|
118 |
-
- mypy_extensions=0.4.3=py38haa95532_1
|
119 |
-
- nbclient=0.5.13=py38haa95532_0
|
120 |
-
- nbconvert=6.4.4=py38haa95532_0
|
121 |
-
- nbformat=5.3.0=py38haa95532_0
|
122 |
-
- nest-asyncio=1.5.5=py38haa95532_0
|
123 |
-
- nomkl=1.0=h5ca1d4c_0
|
124 |
-
- notebook=6.4.11=py38haa95532_0
|
125 |
-
- numpydoc=1.2=pyhd3eb1b0_0
|
126 |
-
- oauthlib=3.2.0=pyhd8ed1ab_0
|
127 |
-
- opencv=4.0.1=py38h2a7c758_0
|
128 |
-
- openssl=1.1.1p=h8ffe710_0
|
129 |
-
- opt_einsum=3.3.0=pyhd8ed1ab_1
|
130 |
-
- packaging=21.3=pyhd3eb1b0_0
|
131 |
-
- pandas=1.2.4=py38hf11a4ad_0
|
132 |
-
- pandocfilters=1.5.0=pyhd3eb1b0_0
|
133 |
-
- paramiko=2.8.1=pyhd3eb1b0_0
|
134 |
-
- parso=0.7.0=py_0
|
135 |
-
- pathspec=0.7.0=py_0
|
136 |
-
- pcre=8.45=hd77b12b_0
|
137 |
-
- pexpect=4.8.0=pyhd3eb1b0_3
|
138 |
-
- pickleshare=0.7.5=pyhd3eb1b0_1003
|
139 |
-
- pip=21.2.2=py38haa95532_0
|
140 |
-
- platformdirs=2.4.0=pyhd3eb1b0_0
|
141 |
-
- pluggy=1.0.0=py38haa95532_1
|
142 |
-
- poyo=0.5.0=pyhd3eb1b0_0
|
143 |
-
- prometheus_client=0.13.1=pyhd3eb1b0_0
|
144 |
-
- prompt-toolkit=3.0.20=pyhd3eb1b0_0
|
145 |
-
- psutil=5.8.0=py38h2bbff1b_1
|
146 |
-
- ptyprocess=0.7.0=pyhd3eb1b0_2
|
147 |
-
- pure_eval=0.2.2=pyhd3eb1b0_0
|
148 |
-
- py-opencv=4.0.1=py38he44ac1e_0
|
149 |
-
- pyasn1=0.4.8=py_0
|
150 |
-
- pyasn1-modules=0.2.7=py_0
|
151 |
-
- pycodestyle=2.6.0=pyhd3eb1b0_0
|
152 |
-
- pycparser=2.21=pyhd3eb1b0_0
|
153 |
-
- pydocstyle=6.1.1=pyhd3eb1b0_0
|
154 |
-
- pyflakes=2.2.0=pyhd3eb1b0_0
|
155 |
-
- pygments=2.11.2=pyhd3eb1b0_0
|
156 |
-
- pyjwt=2.4.0=pyhd8ed1ab_0
|
157 |
-
- pylint=2.12.2=py38haa95532_1
|
158 |
-
- pyls-black=0.4.6=hd3eb1b0_0
|
159 |
-
- pyls-spyder=0.3.2=pyhd3eb1b0_0
|
160 |
-
- pynacl=1.4.0=py38h62dcd97_1
|
161 |
-
- pyopenssl=22.0.0=pyhd3eb1b0_0
|
162 |
-
- pyqt=5.9.2=py38hd77b12b_6
|
163 |
-
- pyreadline=2.1=py38haa244fe_1005
|
164 |
-
- pyrsistent=0.18.0=py38h196d8e1_0
|
165 |
-
- pysocks=1.7.1=py38haa95532_0
|
166 |
-
- python=3.8.13=h6244533_0
|
167 |
-
- python-dateutil=2.8.2=pyhd3eb1b0_0
|
168 |
-
- python-fastjsonschema=2.15.1=pyhd3eb1b0_0
|
169 |
-
- python-jsonrpc-server=0.4.0=py_0
|
170 |
-
- python-language-server=0.36.2=pyhd3eb1b0_0
|
171 |
-
- python-slugify=5.0.2=pyhd3eb1b0_0
|
172 |
-
- python_abi=3.8=2_cp38
|
173 |
-
- pytz=2022.1=py38haa95532_0
|
174 |
-
- pyu2f=0.1.5=pyhd8ed1ab_0
|
175 |
-
- pywin32=302=py38h2bbff1b_2
|
176 |
-
- pywin32-ctypes=0.2.0=py38_1000
|
177 |
-
- pywinpty=2.0.2=py38h5da7b33_0
|
178 |
-
- pyyaml=6.0=py38h2bbff1b_1
|
179 |
-
- pyzmq=22.3.0=py38hd77b12b_2
|
180 |
-
- qdarkstyle=3.0.2=pyhd3eb1b0_0
|
181 |
-
- qstylizer=0.1.10=pyhd3eb1b0_0
|
182 |
-
- qt=5.9.7=vc14h73c81de_0
|
183 |
-
- qtawesome=1.0.3=pyhd3eb1b0_0
|
184 |
-
- qtconsole=5.3.0=pyhd3eb1b0_0
|
185 |
-
- qtpy=2.0.1=pyhd3eb1b0_0
|
186 |
-
- regex=2022.3.15=py38h2bbff1b_0
|
187 |
-
- requests=2.27.1=pyhd3eb1b0_0
|
188 |
-
- requests-oauthlib=1.3.1=pyhd8ed1ab_0
|
189 |
-
- rope=0.22.0=pyhd3eb1b0_0
|
190 |
-
- rsa=4.8=pyhd8ed1ab_0
|
191 |
-
- rtree=0.9.7=py38h2eaa2aa_1
|
192 |
-
- scikit-learn=1.0.2=py38hf11a4ad_1
|
193 |
-
- scipy=1.5.3=py38h5f893b4_0
|
194 |
-
- send2trash=1.8.0=pyhd3eb1b0_1
|
195 |
-
- setuptools=61.2.0=py38haa95532_0
|
196 |
-
- sip=4.19.13=py38hd77b12b_0
|
197 |
-
- snowballstemmer=2.2.0=pyhd3eb1b0_0
|
198 |
-
- sortedcontainers=2.4.0=pyhd3eb1b0_0
|
199 |
-
- soupsieve=2.3.1=pyhd3eb1b0_0
|
200 |
-
- sphinx=4.4.0=pyhd3eb1b0_0
|
201 |
-
- sphinxcontrib-applehelp=1.0.2=pyhd3eb1b0_0
|
202 |
-
- sphinxcontrib-devhelp=1.0.2=pyhd3eb1b0_0
|
203 |
-
- sphinxcontrib-htmlhelp=2.0.0=pyhd3eb1b0_0
|
204 |
-
- sphinxcontrib-jsmath=1.0.1=pyhd3eb1b0_0
|
205 |
-
- sphinxcontrib-qthelp=1.0.3=pyhd3eb1b0_0
|
206 |
-
- sphinxcontrib-serializinghtml=1.1.5=pyhd3eb1b0_0
|
207 |
-
- spyder=5.0.5=py38haa95532_2
|
208 |
-
- spyder-kernels=2.0.5=py38haa95532_0
|
209 |
-
- sqlite=3.38.3=h2bbff1b_0
|
210 |
-
- stack_data=0.2.0=pyhd3eb1b0_0
|
211 |
-
- tensorboard=2.9.0=pyhd8ed1ab_0
|
212 |
-
- tensorboard-data-server=0.6.0=py38haa244fe_2
|
213 |
-
- tensorboard-plugin-wit=1.8.1=pyhd8ed1ab_0
|
214 |
-
- tensorflow=2.3.0=mkl_py38h8557ec7_0
|
215 |
-
- tensorflow-base=2.3.0=eigen_py38h75a453f_0
|
216 |
-
- tensorflow-estimator=2.5.0=pyh8a188c0_0
|
217 |
-
- tensorflow-gpu=2.3.0=he13fc11_0
|
218 |
-
- termcolor=1.1.0=py_2
|
219 |
-
- terminado=0.13.1=py38haa95532_0
|
220 |
-
- testpath=0.5.0=pyhd3eb1b0_0
|
221 |
-
- text-unidecode=1.3=pyhd3eb1b0_0
|
222 |
-
- textdistance=4.2.1=pyhd3eb1b0_0
|
223 |
-
- threadpoolctl=2.2.0=pyh0d69192_0
|
224 |
-
- three-merge=0.1.1=pyhd3eb1b0_0
|
225 |
-
- tinycss=0.4=pyhd3eb1b0_1002
|
226 |
-
- toml=0.10.2=pyhd3eb1b0_0
|
227 |
-
- tornado=6.1=py38h2bbff1b_0
|
228 |
-
- traitlets=5.1.1=pyhd3eb1b0_0
|
229 |
-
- typed-ast=1.4.3=py38h2bbff1b_1
|
230 |
-
- ujson=5.1.0=py38hd77b12b_0
|
231 |
-
- unidecode=1.2.0=pyhd3eb1b0_0
|
232 |
-
- urllib3=1.26.9=py38haa95532_0
|
233 |
-
- vc=14.2=h21ff451_1
|
234 |
-
- vs2015_runtime=14.27.29016=h5e58377_2
|
235 |
-
- watchdog=2.1.6=py38haa95532_0
|
236 |
-
- wcwidth=0.2.5=pyhd3eb1b0_0
|
237 |
-
- webencodings=0.5.1=py38_1
|
238 |
-
- werkzeug=2.1.2=pyhd8ed1ab_1
|
239 |
-
- wheel=0.37.1=pyhd3eb1b0_0
|
240 |
-
- win_inet_pton=1.1.0=py38haa95532_0
|
241 |
-
- wincertstore=0.2=py38haa95532_2
|
242 |
-
- winpty=0.4.3=4
|
243 |
-
- xz=5.2.5=h8cc25b3_1
|
244 |
-
- yaml=0.2.5=he774522_0
|
245 |
-
- yapf=0.31.0=pyhd3eb1b0_0
|
246 |
-
- yarl=1.7.2=py38h294d835_2
|
247 |
-
- zipp=3.8.0=py38haa95532_0
|
248 |
-
- zlib=1.2.12=h8cc25b3_2
|
249 |
-
- zstd=1.5.2=h19a0ad4_0
|
250 |
-
- pip:
|
251 |
-
- absl-py==0.15.0
|
252 |
-
- cycler==0.11.0
|
253 |
-
- fonttools==4.33.3
|
254 |
-
- grpcio==1.32.0
|
255 |
-
- kiwisolver==1.4.3
|
256 |
-
- matplotlib==3.5.2
|
257 |
-
- mediapipe==0.8.10
|
258 |
-
- numpy==1.23.0
|
259 |
-
- opencv-contrib-python==4.6.0.66
|
260 |
-
- pillow==9.1.1
|
261 |
-
- protobuf==4.21.1
|
262 |
-
- pyparsing==3.0.9
|
263 |
-
- six==1.15.0
|
264 |
-
- typing-extensions==3.7.4.3
|
265 |
-
- wrapt==1.12.1
|
266 |
-
prefix: C:\Users\cpras\anaconda3\envs\AItrainer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Exercise_Recognition_AI-main/main.py
DELETED
@@ -1,324 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import streamlit as st
|
3 |
-
import cv2
|
4 |
-
import mediapipe as mp
|
5 |
-
import numpy as np
|
6 |
-
import math
|
7 |
-
from tensorflow.keras.models import Model
|
8 |
-
from tensorflow.keras.layers import (LSTM, Dense, Dropout, Input, Flatten,
|
9 |
-
Bidirectional, Permute, multiply)
|
10 |
-
|
11 |
-
# Load the pose estimation model from Mediapipe
|
12 |
-
mp_pose = mp.solutions.pose
|
13 |
-
mp_drawing = mp.solutions.drawing_utils
|
14 |
-
pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
15 |
-
|
16 |
-
# Define the attention block for the LSTM model
|
17 |
-
def attention_block(inputs, time_steps):
|
18 |
-
a = Permute((2, 1))(inputs)
|
19 |
-
a = Dense(time_steps, activation='softmax')(a)
|
20 |
-
a_probs = Permute((2, 1), name='attention_vec')(a)
|
21 |
-
output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
|
22 |
-
return output_attention_mul
|
23 |
-
|
24 |
-
# Build and load the LSTM model
|
25 |
-
@st.cache(allow_output_mutation=True)
|
26 |
-
def build_model(HIDDEN_UNITS=256, sequence_length=30, num_input_values=33*4, num_classes=3):
|
27 |
-
inputs = Input(shape=(sequence_length, num_input_values))
|
28 |
-
lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)
|
29 |
-
attention_mul = attention_block(lstm_out, sequence_length)
|
30 |
-
attention_mul = Flatten()(attention_mul)
|
31 |
-
x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)
|
32 |
-
x = Dropout(0.5)(x)
|
33 |
-
x = Dense(num_classes, activation='softmax')(x)
|
34 |
-
model = Model(inputs=[inputs], outputs=x)
|
35 |
-
load_dir = "./models/LSTM_Attention.h5"
|
36 |
-
model.load_weights(load_dir)
|
37 |
-
return model
|
38 |
-
|
39 |
-
# Define the VideoProcessor class for real-time video processing
|
40 |
-
class VideoProcessor:
|
41 |
-
def __init__(self):
|
42 |
-
# Parameters
|
43 |
-
self.actions = np.array(['curl', 'press', 'squat'])
|
44 |
-
self.sequence_length = 30
|
45 |
-
self.colors = [(245,117,16), (117,245,16), (16,117,245)]
|
46 |
-
self.threshold = 0.5
|
47 |
-
|
48 |
-
self.model = build_model(256)
|
49 |
-
|
50 |
-
# Detection variables
|
51 |
-
self.sequence = []
|
52 |
-
self.current_action = ''
|
53 |
-
|
54 |
-
# Rep counter logic variables
|
55 |
-
self.curl_counter = 0
|
56 |
-
self.press_counter = 0
|
57 |
-
self.squat_counter = 0
|
58 |
-
self.curl_stage = None
|
59 |
-
self.press_stage = None
|
60 |
-
self.squat_stage = None
|
61 |
-
self.pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
62 |
-
|
63 |
-
def process_video(self, video_file):
|
64 |
-
# Get the filename from the file object
|
65 |
-
filename = "temp_video.mp4"
|
66 |
-
# Create a temporary file to write the contents of the uploaded video file
|
67 |
-
with open(filename, 'wb') as temp_file:
|
68 |
-
temp_file.write(video_file.read())
|
69 |
-
|
70 |
-
# Process the video and save the processed video to a new file
|
71 |
-
output_filename = "processed_video.mp4"
|
72 |
-
cap = cv2.VideoCapture(filename)
|
73 |
-
frame_width = int(cap.get(3))
|
74 |
-
frame_height = int(cap.get(4))
|
75 |
-
out = cv2.VideoWriter(output_filename, cv2.VideoWriter_fourcc(*'h264'), 30, (frame_width, frame_height))
|
76 |
-
while cap.isOpened():
|
77 |
-
ret, frame = cap.read()
|
78 |
-
if not ret:
|
79 |
-
break
|
80 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
81 |
-
results = self.pose.process(frame_rgb)
|
82 |
-
processed_frame = self.process_frame(frame, results)
|
83 |
-
out.write(processed_frame)
|
84 |
-
cap.release()
|
85 |
-
out.release()
|
86 |
-
|
87 |
-
# Remove the temporary file
|
88 |
-
os.remove(filename)
|
89 |
-
|
90 |
-
# Return the path to the processed video file
|
91 |
-
return output_filename
|
92 |
-
|
93 |
-
def process_frame(self, frame, results):
|
94 |
-
# Process the frame using the `process` function
|
95 |
-
processed_frame = self.process(frame)
|
96 |
-
return processed_frame
|
97 |
-
|
98 |
-
def process(self, image):
|
99 |
-
|
100 |
-
# Pose detection model
|
101 |
-
image.flags.writeable = False
|
102 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
103 |
-
results = pose.process(image)
|
104 |
-
|
105 |
-
# Draw the hand annotations on the image.
|
106 |
-
image.flags.writeable = True
|
107 |
-
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
108 |
-
self.draw_landmarks(image, results)
|
109 |
-
|
110 |
-
# Prediction logic
|
111 |
-
keypoints = self.extract_keypoints(results)
|
112 |
-
self.sequence.append(keypoints.astype('float32',casting='same_kind'))
|
113 |
-
self.sequence = self.sequence[-self.sequence_length:]
|
114 |
-
|
115 |
-
if len(self.sequence) == self.sequence_length:
|
116 |
-
res = self.model.predict(np.expand_dims(self.sequence, axis=0), verbose=0)[0]
|
117 |
-
|
118 |
-
self.current_action = self.actions[np.argmax(res)]
|
119 |
-
confidence = np.max(res)
|
120 |
-
print("confidence", confidence) # Debug print statement
|
121 |
-
print("current action" , self.current_action)
|
122 |
-
|
123 |
-
# Erase current action variable if no probability is above threshold
|
124 |
-
if confidence < self.threshold:
|
125 |
-
self.current_action = ''
|
126 |
-
|
127 |
-
|
128 |
-
print("current action" , self.current_action)
|
129 |
-
|
130 |
-
|
131 |
-
# Viz probabilities
|
132 |
-
image = self.prob_viz(res, image)
|
133 |
-
|
134 |
-
# Count reps
|
135 |
-
|
136 |
-
landmarks = results.pose_landmarks.landmark
|
137 |
-
self.count_reps(image, landmarks, mp_pose)
|
138 |
-
|
139 |
-
|
140 |
-
# Display graphical information
|
141 |
-
cv2.rectangle(image, (0,0), (640, 40), self.colors[np.argmax(res)], -1)
|
142 |
-
cv2.putText(image, 'curl ' + str(self.curl_counter), (3,30),
|
143 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
144 |
-
cv2.putText(image, 'press ' + str(self.press_counter), (240,30),
|
145 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
146 |
-
cv2.putText(image, 'squat ' + str(self.squat_counter), (490,30),
|
147 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
148 |
-
|
149 |
-
return image
|
150 |
-
|
151 |
-
def draw_landmarks(self, image, results):
|
152 |
-
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
153 |
-
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
|
154 |
-
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2))
|
155 |
-
return image
|
156 |
-
|
157 |
-
def extract_keypoints(self, results):
|
158 |
-
pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)
|
159 |
-
return pose
|
160 |
-
|
161 |
-
def count_reps(self, image, landmarks, mp_pose):
|
162 |
-
"""
|
163 |
-
Counts repetitions of each exercise. Global count and stage (i.e., state) variables are updated within this function.
|
164 |
-
|
165 |
-
"""
|
166 |
-
|
167 |
-
if self.current_action == 'curl':
|
168 |
-
# Get coords
|
169 |
-
shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
|
170 |
-
elbow = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ELBOW')
|
171 |
-
wrist = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'WRIST')
|
172 |
-
|
173 |
-
# calculate elbow angle
|
174 |
-
angle = self.calculate_angle(shoulder, elbow, wrist)
|
175 |
-
|
176 |
-
# curl counter logic
|
177 |
-
print("Curl Angle:", angle) # Debug print statement
|
178 |
-
if angle < 30:
|
179 |
-
self.curl_stage = "up"
|
180 |
-
if angle > 140 and self.curl_stage == 'up':
|
181 |
-
self.curl_stage = "down"
|
182 |
-
self.curl_counter += 1
|
183 |
-
print("count:",self.curl_counter)
|
184 |
-
self.press_stage = None
|
185 |
-
self.squat_stage = None
|
186 |
-
|
187 |
-
# Viz joint angle
|
188 |
-
self.viz_joint_angle(image, angle, elbow)
|
189 |
-
|
190 |
-
elif self.current_action == 'press':
|
191 |
-
# Get coords
|
192 |
-
shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
|
193 |
-
elbow = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ELBOW')
|
194 |
-
wrist = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'WRIST')
|
195 |
-
|
196 |
-
# Calculate elbow angle
|
197 |
-
elbow_angle = self.calculate_angle(shoulder, elbow, wrist)
|
198 |
-
print(shoulder, elbow, wrist)
|
199 |
-
# Compute distances between joints
|
200 |
-
shoulder2elbow_dist = abs(math.dist(shoulder, elbow))
|
201 |
-
shoulder2wrist_dist = abs(math.dist(shoulder, wrist))
|
202 |
-
|
203 |
-
# Press counter logic
|
204 |
-
print("Press Angle:", elbow_angle) # Debug print statement
|
205 |
-
print("Shoulder to Elbow Distance:", shoulder2elbow_dist) # Debug print statement
|
206 |
-
print("Shoulder to Wrist Distance:", shoulder2wrist_dist) # Debug print statement
|
207 |
-
if (elbow_angle > 130) and (shoulder2elbow_dist < shoulder2wrist_dist):
|
208 |
-
self.press_stage = "up"
|
209 |
-
if (elbow_angle < 50) and (shoulder2elbow_dist > shoulder2wrist_dist) and (self.press_stage == 'up'):
|
210 |
-
self.press_stage = 'down'
|
211 |
-
self.press_counter += 1
|
212 |
-
|
213 |
-
|
214 |
-
print("count:",self.press_counter)
|
215 |
-
self.curl_stage = None
|
216 |
-
self.squat_stage = None
|
217 |
-
|
218 |
-
# Viz joint angle
|
219 |
-
self.viz_joint_angle(image, elbow_angle, elbow)
|
220 |
-
|
221 |
-
elif self.current_action == 'squat':
|
222 |
-
# Get coords
|
223 |
-
# left side
|
224 |
-
left_shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
|
225 |
-
left_hip = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'HIP')
|
226 |
-
left_knee = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'KNEE')
|
227 |
-
left_ankle = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ANKLE')
|
228 |
-
# right side
|
229 |
-
right_shoulder = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'SHOULDER')
|
230 |
-
right_hip = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'HIP')
|
231 |
-
right_knee = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'KNEE')
|
232 |
-
right_ankle = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'ANKLE')
|
233 |
-
|
234 |
-
# Calculate knee angles
|
235 |
-
left_knee_angle = self.calculate_angle(left_hip, left_knee, left_ankle)
|
236 |
-
right_knee_angle = self.calculate_angle(right_hip, right_knee, right_ankle)
|
237 |
-
|
238 |
-
# Calculate hip angles
|
239 |
-
left_hip_angle = self.calculate_angle(left_shoulder, left_hip, left_knee)
|
240 |
-
right_hip_angle = self.calculate_angle(right_shoulder, right_hip, right_knee)
|
241 |
-
|
242 |
-
# Squat counter logic
|
243 |
-
thr = 165
|
244 |
-
print("Left Knee Angle:", left_knee_angle) # Debug print statement
|
245 |
-
print("Right Knee Angle:", right_knee_angle) # Debug print statement
|
246 |
-
print("Left Hip Angle:", left_hip_angle) # Debug print statement
|
247 |
-
print("Right Hip Angle:", right_hip_angle) # Debug print statement
|
248 |
-
if (left_knee_angle < thr) and (right_knee_angle < thr) and (left_hip_angle < thr) and (
|
249 |
-
right_hip_angle < thr):
|
250 |
-
self.squat_stage = "down"
|
251 |
-
if (left_knee_angle > thr) and (right_knee_angle > thr) and (left_hip_angle > thr) and (
|
252 |
-
right_hip_angle > thr) and (self.squat_stage == 'down'):
|
253 |
-
self.squat_stage = 'up'
|
254 |
-
self.squat_counter += 1
|
255 |
-
print("count:",self.squat_counter)
|
256 |
-
self.curl_stage = None
|
257 |
-
self.press_stage = None
|
258 |
-
|
259 |
-
# Viz joint angles
|
260 |
-
self.viz_joint_angle(image, left_knee_angle, left_knee)
|
261 |
-
self.viz_joint_angle(image, left_hip_angle, left_hip)
|
262 |
-
|
263 |
-
else:
|
264 |
-
pass
|
265 |
-
return
|
266 |
-
|
267 |
-
def prob_viz(self, res, input_frame):
|
268 |
-
"""
|
269 |
-
This function displays the model prediction probability distribution over the set of exercise classes
|
270 |
-
as a horizontal bar graph
|
271 |
-
|
272 |
-
"""
|
273 |
-
output_frame = input_frame.copy()
|
274 |
-
for num, prob in enumerate(res):
|
275 |
-
cv2.rectangle(output_frame, (0,60+num*40), (int(prob*100), 90+num*40), self.colors[num], -1)
|
276 |
-
cv2.putText(output_frame, self.actions[num], (0, 85+num*40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.LINE_AA)
|
277 |
-
|
278 |
-
return output_frame
|
279 |
-
|
280 |
-
def get_coordinates(self, landmarks, mp_pose, side, part):
|
281 |
-
|
282 |
-
|
283 |
-
coord = getattr(mp_pose.PoseLandmark,side.upper()+"_"+part.upper())
|
284 |
-
x_coord_val = landmarks[coord.value].x
|
285 |
-
y_coord_val = landmarks[coord.value].y
|
286 |
-
return [x_coord_val, y_coord_val]
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
def calculate_angle(self, a, b, c):
|
295 |
-
a = np.array(a)
|
296 |
-
b = np.array(b)
|
297 |
-
c = np.array(c)
|
298 |
-
radians = math.atan2(c[1]-b[1], c[0]-b[0]) - math.atan2(a[1]-b[1], a[0]-b[0])
|
299 |
-
angle = np.abs(radians*180.0/np.pi)
|
300 |
-
if angle > 180.0:
|
301 |
-
angle = 360 - angle
|
302 |
-
return angle
|
303 |
-
|
304 |
-
def viz_joint_angle(self, image, angle, joint):
|
305 |
-
cv2.putText(image, str(round(angle, 2)),
|
306 |
-
tuple(np.multiply(joint, [640, 480]).astype(int)),
|
307 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 2, cv2.LINE_AA)
|
308 |
-
|
309 |
-
# Define Streamlit app
|
310 |
-
def main():
|
311 |
-
st.title("Real-time Exercise Detection")
|
312 |
-
video_file = st.file_uploader("Upload a video file", type=["mp4", "avi"])
|
313 |
-
if video_file is not None:
|
314 |
-
video_processor = VideoProcessor()
|
315 |
-
|
316 |
-
output_video = video_processor.process_video(video_file)
|
317 |
-
|
318 |
-
|
319 |
-
video_file = open(output_video, 'rb')
|
320 |
-
video_bytes = video_file.read()
|
321 |
-
st.video(video_bytes)
|
322 |
-
|
323 |
-
if __name__ == "__main__":
|
324 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Exercise_Recognition_AI-main/models/LSTM.h5
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6778664cec93d5e917b064af44e03dfb4344c3a779d453106d68c1d3ea00e560
|
3 |
-
size 9069616
|
|
|
|
|
|
|
|
Exercise_Recognition_AI-main/models/LSTM_Attention.h5
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2395d5eb371bb8221e2cacb7c98dbc336de6775bd2607747f4e1f72d0fa4e915
|
3 |
-
size 104036816
|
|
|
|
|
|
|
|
Exercise_Recognition_AI-main/pose_tracking_full_body_landmarks.png
DELETED
Binary file (123 kB)
|
|
Exercise_Recognition_AI-main/test.py
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
st.video("C:/Users/amite/Downloads/Exercise_Recognition_AI-main/Exercise_Recognition_AI-main/processed_video.mp4")
|
|
|
|
|
|
|
|
Exercise_Recognition_AI-main/tests/feature_engineering.ipynb
DELETED
@@ -1,295 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 242,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [],
|
8 |
-
"source": [
|
9 |
-
"import cv2\n",
|
10 |
-
"import numpy as np\n",
|
11 |
-
"import os\n",
|
12 |
-
"from matplotlib import pyplot as plt\n",
|
13 |
-
"import time\n",
|
14 |
-
"import mediapipe as mp\n"
|
15 |
-
]
|
16 |
-
},
|
17 |
-
{
|
18 |
-
"cell_type": "code",
|
19 |
-
"execution_count": 243,
|
20 |
-
"metadata": {},
|
21 |
-
"outputs": [],
|
22 |
-
"source": [
|
23 |
-
"# Pre-trained pose estimation model from Google Mediapipe\n",
|
24 |
-
"mp_pose = mp.solutions.pose\n",
|
25 |
-
"\n",
|
26 |
-
"# Supported Mediapipe visualization tools\n",
|
27 |
-
"mp_drawing = mp.solutions.drawing_utils"
|
28 |
-
]
|
29 |
-
},
|
30 |
-
{
|
31 |
-
"cell_type": "code",
|
32 |
-
"execution_count": 244,
|
33 |
-
"metadata": {},
|
34 |
-
"outputs": [],
|
35 |
-
"source": [
|
36 |
-
"def mediapipe_detection(image, model):\n",
|
37 |
-
" \"\"\"\n",
|
38 |
-
" This function detects human pose estimation keypoints from webcam footage\n",
|
39 |
-
" \n",
|
40 |
-
" \"\"\"\n",
|
41 |
-
" image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # COLOR CONVERSION BGR 2 RGB\n",
|
42 |
-
" image.flags.writeable = False # Image is no longer writeable\n",
|
43 |
-
" results = model.process(image) # Make prediction\n",
|
44 |
-
" image.flags.writeable = True # Image is now writeable \n",
|
45 |
-
" image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # COLOR COVERSION RGB 2 BGR\n",
|
46 |
-
" return image, results"
|
47 |
-
]
|
48 |
-
},
|
49 |
-
{
|
50 |
-
"cell_type": "code",
|
51 |
-
"execution_count": 245,
|
52 |
-
"metadata": {},
|
53 |
-
"outputs": [],
|
54 |
-
"source": [
|
55 |
-
"def draw_landmarks(image, results):\n",
|
56 |
-
" \"\"\"\n",
|
57 |
-
" This function draws keypoints and landmarks detected by the human pose estimation model\n",
|
58 |
-
" \n",
|
59 |
-
" \"\"\"\n",
|
60 |
-
" mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,\n",
|
61 |
-
" mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2), \n",
|
62 |
-
" mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2) \n",
|
63 |
-
" )"
|
64 |
-
]
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"cell_type": "code",
|
68 |
-
"execution_count": 246,
|
69 |
-
"metadata": {},
|
70 |
-
"outputs": [],
|
71 |
-
"source": [
|
72 |
-
"def draw_detection(image, results):\n",
|
73 |
-
"\n",
|
74 |
-
" h, w, c = image.shape\n",
|
75 |
-
" cx_min = w\n",
|
76 |
-
" cy_min = h\n",
|
77 |
-
" cx_max = cy_max = 0\n",
|
78 |
-
" center = [w//2, h//2]\n",
|
79 |
-
" try:\n",
|
80 |
-
" for id, lm in enumerate(results.pose_landmarks.landmark):\n",
|
81 |
-
" cx, cy = int(lm.x * w), int(lm.y * h)\n",
|
82 |
-
" if cx < cx_min:\n",
|
83 |
-
" cx_min = cx\n",
|
84 |
-
" if cy < cy_min:\n",
|
85 |
-
" cy_min = cy\n",
|
86 |
-
" if cx > cx_max:\n",
|
87 |
-
" cx_max = cx\n",
|
88 |
-
" if cy > cy_max:\n",
|
89 |
-
" cy_max = cy\n",
|
90 |
-
" \n",
|
91 |
-
" boxW, boxH = cx_max - cx_min, cy_max - cy_min\n",
|
92 |
-
" \n",
|
93 |
-
" # center\n",
|
94 |
-
" cx, cy = cx_min + (boxW // 2), \\\n",
|
95 |
-
" cy_min + (boxH // 2) \n",
|
96 |
-
" center = [cx, cy]\n",
|
97 |
-
" \n",
|
98 |
-
" cv2.rectangle(\n",
|
99 |
-
" image, (cx_min, cy_min), (cx_max, cy_max), (255, 255, 0), 2\n",
|
100 |
-
" )\n",
|
101 |
-
" except:\n",
|
102 |
-
" pass\n",
|
103 |
-
" \n",
|
104 |
-
" return [[cx_min, cy_min], [cx_max, cy_max]], center"
|
105 |
-
]
|
106 |
-
},
|
107 |
-
{
|
108 |
-
"cell_type": "code",
|
109 |
-
"execution_count": 247,
|
110 |
-
"metadata": {},
|
111 |
-
"outputs": [],
|
112 |
-
"source": [
|
113 |
-
"def normalize(image, results, bounding_box, landmark_names):\n",
|
114 |
-
" h, w, c = image.shape\n",
|
115 |
-
" if results.pose_landmarks:\n",
|
116 |
-
" xy = {}\n",
|
117 |
-
" xy_norm = {}\n",
|
118 |
-
" i = 0\n",
|
119 |
-
" for res in results.pose_landmarks.landmark:\n",
|
120 |
-
" x = res.x * w\n",
|
121 |
-
" y = res.y * h\n",
|
122 |
-
" \n",
|
123 |
-
" x_norm = (x - bounding_box[0][0]) / (bounding_box[1][0] - bounding_box[0][0])\n",
|
124 |
-
" y_norm = (y - bounding_box[0][1]) / (bounding_box[1][1] - bounding_box[0][1])\n",
|
125 |
-
" \n",
|
126 |
-
" # xy_norm.append([x_norm, y_norm])\n",
|
127 |
-
" \n",
|
128 |
-
" xy_norm[landmark_names[i]] = [x_norm, y_norm]\n",
|
129 |
-
" i += 1\n",
|
130 |
-
" else:\n",
|
131 |
-
" # xy_norm = np.zeros([0,0] * 33)\n",
|
132 |
-
" \n",
|
133 |
-
" # xy = {landmark_names: [0,0]}\n",
|
134 |
-
" # xy_norm = {landmark_names: [0,0]}\n",
|
135 |
-
" \n",
|
136 |
-
" xy_norm = dict(zip(landmark_names, [0,0] * 33))\n",
|
137 |
-
" \n",
|
138 |
-
" return xy_norm"
|
139 |
-
]
|
140 |
-
},
|
141 |
-
{
|
142 |
-
"cell_type": "code",
|
143 |
-
"execution_count": 248,
|
144 |
-
"metadata": {},
|
145 |
-
"outputs": [],
|
146 |
-
"source": [
|
147 |
-
"def get_coordinates(landmarks, mp_pose, side, joint):\n",
|
148 |
-
" \"\"\"\n",
|
149 |
-
" Retrieves x and y coordinates of a particular keypoint from the pose estimation model\n",
|
150 |
-
" \n",
|
151 |
-
" Args:\n",
|
152 |
-
" landmarks: processed keypoints from the pose estimation model\n",
|
153 |
-
" mp_pose: Mediapipe pose estimation model\n",
|
154 |
-
" side: 'left' or 'right'. Denotes the side of the body of the landmark of interest.\n",
|
155 |
-
" joint: 'shoulder', 'elbow', 'wrist', 'hip', 'knee', or 'ankle'. Denotes which body joint is associated with the landmark of interest.\n",
|
156 |
-
" \n",
|
157 |
-
" \"\"\"\n",
|
158 |
-
" coord = getattr(mp_pose.PoseLandmark,side.upper()+\"_\"+joint.upper())\n",
|
159 |
-
" x_coord_val = landmarks[coord.value].x\n",
|
160 |
-
" y_coord_val = landmarks[coord.value].y\n",
|
161 |
-
" return [x_coord_val, y_coord_val] "
|
162 |
-
]
|
163 |
-
},
|
164 |
-
{
|
165 |
-
"cell_type": "code",
|
166 |
-
"execution_count": 249,
|
167 |
-
"metadata": {},
|
168 |
-
"outputs": [],
|
169 |
-
"source": [
|
170 |
-
"def viz_coords(image, norm_coords, landmarks, mp_pose, side, joint):\n",
|
171 |
-
" \"\"\"\n",
|
172 |
-
" Displays the joint angle value near the joint within the image frame\n",
|
173 |
-
" \n",
|
174 |
-
" \"\"\"\n",
|
175 |
-
" try:\n",
|
176 |
-
" point = side.upper()+\"_\"+joint.upper()\n",
|
177 |
-
" norm_coords = norm_coords[point]\n",
|
178 |
-
" joint = get_coordinates(landmarks, mp_pose, side, joint)\n",
|
179 |
-
" \n",
|
180 |
-
" coords = [ '%.2f' % elem for elem in joint ]\n",
|
181 |
-
" coords = ' '.join(str(coords))\n",
|
182 |
-
" norm_coords = [ '%.2f' % elem for elem in norm_coords ]\n",
|
183 |
-
" norm_coords = ' '.join(str(norm_coords))\n",
|
184 |
-
" cv2.putText(image, coords, \n",
|
185 |
-
" tuple(np.multiply(joint, [640, 480]).astype(int)), \n",
|
186 |
-
" cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA\n",
|
187 |
-
" )\n",
|
188 |
-
" cv2.putText(image, norm_coords, \n",
|
189 |
-
" tuple(np.multiply(joint, [640, 480]).astype(int) + 20), \n",
|
190 |
-
" cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 2, cv2.LINE_AA\n",
|
191 |
-
" )\n",
|
192 |
-
" except:\n",
|
193 |
-
" pass\n",
|
194 |
-
" return"
|
195 |
-
]
|
196 |
-
},
|
197 |
-
{
|
198 |
-
"cell_type": "code",
|
199 |
-
"execution_count": 250,
|
200 |
-
"metadata": {},
|
201 |
-
"outputs": [],
|
202 |
-
"source": [
|
203 |
-
"cap = cv2.VideoCapture(0) # camera object\n",
|
204 |
-
"HEIGHT = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # webcam video frame height\n",
|
205 |
-
"WIDTH = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # webcam video frame width\n",
|
206 |
-
"FPS = int(cap.get(cv2.CAP_PROP_FPS)) # webcam video fram rate \n",
|
207 |
-
"\n",
|
208 |
-
"landmark_names = dir(mp_pose.PoseLandmark)[:-4]\n",
|
209 |
-
"\n",
|
210 |
-
"# Set and test mediapipe model using webcam\n",
|
211 |
-
"with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5, enable_segmentation=True) as pose:\n",
|
212 |
-
" while cap.isOpened():\n",
|
213 |
-
"\n",
|
214 |
-
" # Read feed\n",
|
215 |
-
" ret, frame = cap.read()\n",
|
216 |
-
" \n",
|
217 |
-
" # Make detection\n",
|
218 |
-
" image, results = mediapipe_detection(frame, pose)\n",
|
219 |
-
" \n",
|
220 |
-
" # Extract landmarks\n",
|
221 |
-
" try:\n",
|
222 |
-
" landmarks = results.pose_landmarks.landmark\n",
|
223 |
-
" except:\n",
|
224 |
-
" pass\n",
|
225 |
-
" \n",
|
226 |
-
" # draw bounding box\n",
|
227 |
-
" bounding_box, box_center = draw_detection(image, results)\n",
|
228 |
-
" \n",
|
229 |
-
" # Render detections\n",
|
230 |
-
" draw_landmarks(image, results) \n",
|
231 |
-
" \n",
|
232 |
-
" # normalize coordinates\n",
|
233 |
-
" xy_norm = normalize(image, results, bounding_box, landmark_names) \n",
|
234 |
-
" viz_coords(image, xy_norm, landmarks, mp_pose, 'left', 'wrist') \n",
|
235 |
-
" viz_coords(image, xy_norm, landmarks, mp_pose, 'right', 'wrist') \n",
|
236 |
-
" \n",
|
237 |
-
" # Display frame on screen\n",
|
238 |
-
" cv2.imshow('OpenCV Feed', image)\n",
|
239 |
-
" \n",
|
240 |
-
" # Draw segmentation on the image.\n",
|
241 |
-
" # To improve segmentation around boundaries, consider applying a joint\n",
|
242 |
-
" # bilateral filter to \"results.segmentation_mask\" with \"image\".\n",
|
243 |
-
" # tightness = 0.3 # Probability threshold in [0, 1] that says how \"tight\" to make the segmentation. Greater value => tighter.\n",
|
244 |
-
" # condition = np.stack((results.segmentation_mask,) * 3, axis=-1) > tightness\n",
|
245 |
-
" # bg_image = np.zeros(image.shape, dtype=np.uint8)\n",
|
246 |
-
" # bg_image[:] = (192, 192, 192) # gray\n",
|
247 |
-
" # image = np.where(condition, image, bg_image)\n",
|
248 |
-
" \n",
|
249 |
-
" # Exit / break out logic\n",
|
250 |
-
" if cv2.waitKey(10) & 0xFF == ord('q'):\n",
|
251 |
-
" break\n",
|
252 |
-
"\n",
|
253 |
-
" cap.release()\n",
|
254 |
-
" cv2.destroyAllWindows()"
|
255 |
-
]
|
256 |
-
},
|
257 |
-
{
|
258 |
-
"cell_type": "code",
|
259 |
-
"execution_count": 251,
|
260 |
-
"metadata": {},
|
261 |
-
"outputs": [],
|
262 |
-
"source": [
|
263 |
-
"cap.release()\n",
|
264 |
-
"cv2.destroyAllWindows()"
|
265 |
-
]
|
266 |
-
}
|
267 |
-
],
|
268 |
-
"metadata": {
|
269 |
-
"kernelspec": {
|
270 |
-
"display_name": "Python 3.8.13 ('AItrainer')",
|
271 |
-
"language": "python",
|
272 |
-
"name": "python3"
|
273 |
-
},
|
274 |
-
"language_info": {
|
275 |
-
"codemirror_mode": {
|
276 |
-
"name": "ipython",
|
277 |
-
"version": 3
|
278 |
-
},
|
279 |
-
"file_extension": ".py",
|
280 |
-
"mimetype": "text/x-python",
|
281 |
-
"name": "python",
|
282 |
-
"nbconvert_exporter": "python",
|
283 |
-
"pygments_lexer": "ipython3",
|
284 |
-
"version": "3.8.13"
|
285 |
-
},
|
286 |
-
"orig_nbformat": 4,
|
287 |
-
"vscode": {
|
288 |
-
"interpreter": {
|
289 |
-
"hash": "80aa1d3f3a8cfb37a38c47373cc49a39149184c5fa770d709389b1b8782c1d85"
|
290 |
-
}
|
291 |
-
}
|
292 |
-
},
|
293 |
-
"nbformat": 4,
|
294 |
-
"nbformat_minor": 2
|
295 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|