vedAi / app.py
randomshit11's picture
Rename app.txt to app.py
7fefcad verified
raw
history blame
935 Bytes
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from transformers import pipeline
import gradio as gr
# Load the model pipeline
pipe = pipeline("image-classification", "dima806/medicinal_plants_image_detection")
# Define the image classification function
def image_classifier(image):
# Perform image classification
outputs = pipe(image)
results = {}
for result in outputs:
results[result['label']] = result['score']
return results
# Define Gradio Interface
gr_interface = gr.Interface(fn=image_classifier, inputs=gr.Image(type="pil"), outputs="label")
# Define FastAPI app
app = FastAPI()
# Define route for Gradio interface
@app.get("/")
async def gr_interface_route():
return HTMLResponse(gr_interface.launch(inline=False, inbrowser=True))
# Expose the FastAPI app using Uvicorn
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)