Spaces:
Configuration error
Configuration error
File size: 22,464 Bytes
97e3689 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"objc[24504]: Class CaptureDelegate is implemented in both /Users/fuixlabsdev1/Programming/PP/graduation-thesis/env/lib/python3.8/site-packages/mediapipe/.dylibs/libopencv_videoio.3.4.16.dylib (0x1153c8860) and /Users/fuixlabsdev1/Programming/PP/graduation-thesis/env/lib/python3.8/site-packages/cv2/cv2.abi3.so (0x2876f6480). One of the two will be used. Which one is undefined.\n",
"objc[24504]: Class CVWindow is implemented in both /Users/fuixlabsdev1/Programming/PP/graduation-thesis/env/lib/python3.8/site-packages/mediapipe/.dylibs/libopencv_highgui.3.4.16.dylib (0x115110a68) and /Users/fuixlabsdev1/Programming/PP/graduation-thesis/env/lib/python3.8/site-packages/cv2/cv2.abi3.so (0x2876f64d0). One of the two will be used. Which one is undefined.\n",
"objc[24504]: Class CVView is implemented in both /Users/fuixlabsdev1/Programming/PP/graduation-thesis/env/lib/python3.8/site-packages/mediapipe/.dylibs/libopencv_highgui.3.4.16.dylib (0x115110a90) and /Users/fuixlabsdev1/Programming/PP/graduation-thesis/env/lib/python3.8/site-packages/cv2/cv2.abi3.so (0x2876f64f8). One of the two will be used. Which one is undefined.\n",
"objc[24504]: Class CVSlider is implemented in both /Users/fuixlabsdev1/Programming/PP/graduation-thesis/env/lib/python3.8/site-packages/mediapipe/.dylibs/libopencv_highgui.3.4.16.dylib (0x115110ab8) and /Users/fuixlabsdev1/Programming/PP/graduation-thesis/env/lib/python3.8/site-packages/cv2/cv2.abi3.so (0x2876f6520). One of the two will be used. Which one is undefined.\n"
]
}
],
"source": [
"import mediapipe as mp\n",
"import cv2\n",
"import numpy as np\n",
"import pandas as pd\n",
"import pickle\n",
"\n",
"# Drawing helpers\n",
"mp_drawing = mp.solutions.drawing_utils\n",
"mp_pose = mp.solutions.pose"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Set up important functions and variables"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"IMPORTANT_LMS = [\n",
" \"NOSE\",\n",
" \"LEFT_SHOULDER\",\n",
" \"RIGHT_SHOULDER\",\n",
" \"LEFT_HIP\",\n",
" \"RIGHT_HIP\",\n",
" \"LEFT_KNEE\",\n",
" \"RIGHT_KNEE\",\n",
" \"LEFT_ANKLE\",\n",
" \"RIGHT_ANKLE\"\n",
"]\n",
"\n",
"headers = [\"label\"] # Label column\n",
"\n",
"for lm in IMPORTANT_LMS:\n",
" headers += [f\"{lm.lower()}_x\", f\"{lm.lower()}_y\", f\"{lm.lower()}_z\", f\"{lm.lower()}_v\"]\n",
"\n",
"\n",
"def extract_important_keypoints(results) -> list:\n",
" '''\n",
" Extract important keypoints from mediapipe pose detection\n",
" '''\n",
" landmarks = results.pose_landmarks.landmark\n",
"\n",
" data = []\n",
" for lm in IMPORTANT_LMS:\n",
" keypoint = landmarks[mp_pose.PoseLandmark[lm].value]\n",
" data.append([keypoint.x, keypoint.y, keypoint.z, keypoint.visibility])\n",
" \n",
" return np.array(data).flatten().tolist()\n",
"\n",
"\n",
"def rescale_frame(frame, percent=50):\n",
" '''\n",
" Rescale a frame to a certain percentage compare to its original frame\n",
" '''\n",
" width = int(frame.shape[1] * percent/ 100)\n",
" height = int(frame.shape[0] * percent/ 100)\n",
" dim = (width, height)\n",
" return cv2.resize(frame, dim, interpolation =cv2.INTER_AREA)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Analyze and detection bad pose\n",
"\n",
"Look through [this](./analyze_bad_pose.ipynb) on how we analyze bad foot and knee placement while doing squat."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import math \n",
"\n",
"\n",
"def calculate_distance(pointX, pointY) -> float:\n",
" '''\n",
" Calculate a distance between 2 points\n",
" '''\n",
"\n",
" x1, y1 = pointX\n",
" x2, y2 = pointY\n",
"\n",
" return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)\n",
"\n",
"\n",
"def analyze_foot_knee_placement(results, stage: str, foot_shoulder_ratio_thresholds: list, knee_foot_ratio_thresholds: dict, visibility_threshold: int) -> dict:\n",
" '''\n",
" Calculate the ratio between the foot and shoulder for FOOT PLACEMENT analysis\n",
" \n",
" Calculate the ratio between the knee and foot for KNEE PLACEMENT analysis\n",
"\n",
" Return result explanation:\n",
" -1: Unknown result due to poor visibility\n",
" 0: Correct knee placement\n",
" 1: Placement too tight\n",
" 2: Placement too wide\n",
" '''\n",
" analyzed_results = {\n",
" \"foot_placement\": -1,\n",
" \"knee_placement\": -1,\n",
" }\n",
"\n",
" landmarks = results.pose_landmarks.landmark\n",
"\n",
" # * Visibility check of important landmarks for foot placement analysis\n",
" left_foot_index_vis = landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].visibility\n",
" right_foot_index_vis = landmarks[mp_pose.PoseLandmark.RIGHT_FOOT_INDEX.value].visibility\n",
"\n",
" left_knee_vis = landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].visibility\n",
" right_knee_vis = landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].visibility\n",
"\n",
" # If visibility of any keypoints is low cancel the analysis\n",
" if (left_foot_index_vis < visibility_threshold or right_foot_index_vis < visibility_threshold or left_knee_vis < visibility_threshold or right_knee_vis < visibility_threshold):\n",
" return analyzed_results\n",
" \n",
" # * Calculate shoulder width\n",
" left_shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x, landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]\n",
" right_shoulder = [landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].x, landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y]\n",
" shoulder_width = calculate_distance(left_shoulder, right_shoulder)\n",
"\n",
" # * Calculate 2-foot width\n",
" left_foot_index = [landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].x, landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].y]\n",
" right_foot_index = [landmarks[mp_pose.PoseLandmark.RIGHT_FOOT_INDEX.value].x, landmarks[mp_pose.PoseLandmark.RIGHT_FOOT_INDEX.value].y]\n",
" foot_width = calculate_distance(left_foot_index, right_foot_index)\n",
"\n",
" # * Calculate foot and shoulder ratio\n",
" foot_shoulder_ratio = round(foot_width / shoulder_width, 1)\n",
"\n",
" # * Analyze FOOT PLACEMENT\n",
" min_ratio_foot_shoulder, max_ratio_foot_shoulder = foot_shoulder_ratio_thresholds\n",
" if min_ratio_foot_shoulder <= foot_shoulder_ratio <= max_ratio_foot_shoulder:\n",
" analyzed_results[\"foot_placement\"] = 0\n",
" elif foot_shoulder_ratio < min_ratio_foot_shoulder:\n",
" analyzed_results[\"foot_placement\"] = 1\n",
" elif foot_shoulder_ratio > max_ratio_foot_shoulder:\n",
" analyzed_results[\"foot_placement\"] = 2\n",
" \n",
" # * Visibility check of important landmarks for knee placement analysis\n",
" left_knee_vis = landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].visibility\n",
" right_knee_vis = landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].visibility\n",
"\n",
" # If visibility of any keypoints is low cancel the analysis\n",
" if (left_knee_vis < visibility_threshold or right_knee_vis < visibility_threshold):\n",
" print(\"Cannot see foot\")\n",
" return analyzed_results\n",
"\n",
" # * Calculate 2 knee width\n",
" left_knee = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x, landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y]\n",
" right_knee = [landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].x, landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].y]\n",
" knee_width = calculate_distance(left_knee, right_knee)\n",
"\n",
" # * Calculate foot and shoulder ratio\n",
" knee_foot_ratio = round(knee_width / foot_width, 1)\n",
"\n",
" # * Analyze KNEE placement\n",
" up_min_ratio_knee_foot, up_max_ratio_knee_foot = knee_foot_ratio_thresholds.get(\"up\")\n",
" middle_min_ratio_knee_foot, middle_max_ratio_knee_foot = knee_foot_ratio_thresholds.get(\"middle\")\n",
" down_min_ratio_knee_foot, down_max_ratio_knee_foot = knee_foot_ratio_thresholds.get(\"down\")\n",
"\n",
" if stage == \"up\":\n",
" if up_min_ratio_knee_foot <= knee_foot_ratio <= up_max_ratio_knee_foot:\n",
" analyzed_results[\"knee_placement\"] = 0\n",
" elif knee_foot_ratio < up_min_ratio_knee_foot:\n",
" analyzed_results[\"knee_placement\"] = 1\n",
" elif knee_foot_ratio > up_max_ratio_knee_foot:\n",
" analyzed_results[\"knee_placement\"] = 2\n",
" elif stage == \"middle\":\n",
" if middle_min_ratio_knee_foot <= knee_foot_ratio <= middle_max_ratio_knee_foot:\n",
" analyzed_results[\"knee_placement\"] = 0\n",
" elif knee_foot_ratio < middle_min_ratio_knee_foot:\n",
" analyzed_results[\"knee_placement\"] = 1\n",
" elif knee_foot_ratio > middle_max_ratio_knee_foot:\n",
" analyzed_results[\"knee_placement\"] = 2\n",
" elif stage == \"down\":\n",
" if down_min_ratio_knee_foot <= knee_foot_ratio <= down_max_ratio_knee_foot:\n",
" analyzed_results[\"knee_placement\"] = 0\n",
" elif knee_foot_ratio < down_min_ratio_knee_foot:\n",
" analyzed_results[\"knee_placement\"] = 1\n",
" elif knee_foot_ratio > down_max_ratio_knee_foot:\n",
" analyzed_results[\"knee_placement\"] = 2\n",
" \n",
" return analyzed_results\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. Make detection"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"VIDEO_PATH1 = \"../data/squat/squat_test_1.mov\"\n",
"VIDEO_PATH2 = \"../data/squat/squat_test_2.mov\"\n",
"VIDEO_PATH3 = \"../data/squat/squat_test_3.mp4\"\n",
"VIDEO_PATH4 = \"../data/squat/squat_right_2.mp4\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Load model for counter\n",
"with open(\"./model/squat_model.pkl\", \"rb\") as f:\n",
" count_model = pickle.load(f)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"cap = cv2.VideoCapture(VIDEO_PATH3)\n",
"\n",
"# Counter vars\n",
"counter = 0\n",
"current_stage = \"\"\n",
"PREDICTION_PROB_THRESHOLD = 0.7\n",
"\n",
"# Error vars\n",
"VISIBILITY_THRESHOLD = 0.6\n",
"FOOT_SHOULDER_RATIO_THRESHOLDS = [1.2, 2.8]\n",
"KNEE_FOOT_RATIO_THRESHOLDS = {\n",
" \"up\": [0.5, 1.0],\n",
" \"middle\": [0.7, 1.0],\n",
" \"down\": [0.7, 1.1],\n",
"}\n",
"\n",
"\n",
"with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:\n",
" while cap.isOpened():\n",
" ret, image = cap.read()\n",
"\n",
" if not ret:\n",
" break\n",
" \n",
" # Reduce size of a frame\n",
" image = rescale_frame(image, 100)\n",
"\n",
" # Recolor image from BGR to RGB for mediapipe\n",
" image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
" image.flags.writeable = False\n",
"\n",
" results = pose.process(image)\n",
" if not results.pose_landmarks:\n",
" continue\n",
"\n",
" # Recolor image from BGR to RGB for mediapipe\n",
" image.flags.writeable = True\n",
" image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)\n",
"\n",
" # Draw landmarks and connections\n",
" mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS, mp_drawing.DrawingSpec(color=(244, 117, 66), thickness=2, circle_radius=2), mp_drawing.DrawingSpec(color=(245, 66, 230), thickness=2, circle_radius=1))\n",
"\n",
" # Make detection\n",
" try:\n",
" # * Model prediction for SQUAT counter\n",
" # Extract keypoints from frame for the input\n",
" row = extract_important_keypoints(results)\n",
" X = pd.DataFrame([row], columns=headers[1:])\n",
"\n",
" # Make prediction and its probability\n",
" predicted_class = count_model.predict(X)[0]\n",
" prediction_probabilities = count_model.predict_proba(X)[0]\n",
" prediction_probability = round(prediction_probabilities[prediction_probabilities.argmax()], 2)\n",
"\n",
" # Evaluate model prediction\n",
" if predicted_class == \"down\" and prediction_probability >= PREDICTION_PROB_THRESHOLD:\n",
" current_stage = \"down\"\n",
" elif current_stage == \"down\" and predicted_class == \"up\" and prediction_probability >= PREDICTION_PROB_THRESHOLD: \n",
" current_stage = \"up\"\n",
" counter += 1\n",
"\n",
" # Analyze squat pose\n",
" analyzed_results = analyze_foot_knee_placement(results=results, stage=current_stage, foot_shoulder_ratio_thresholds=FOOT_SHOULDER_RATIO_THRESHOLDS, knee_foot_ratio_thresholds=KNEE_FOOT_RATIO_THRESHOLDS, visibility_threshold=VISIBILITY_THRESHOLD)\n",
"\n",
" foot_placement_evaluation = analyzed_results[\"foot_placement\"]\n",
" knee_placement_evaluation = analyzed_results[\"knee_placement\"]\n",
" \n",
" # * Evaluate FOOT PLACEMENT error\n",
" if foot_placement_evaluation == -1:\n",
" foot_placement = \"UNK\"\n",
" elif foot_placement_evaluation == 0:\n",
" foot_placement = \"Correct\"\n",
" elif foot_placement_evaluation == 1:\n",
" foot_placement = \"Too tight\"\n",
" elif foot_placement_evaluation == 2:\n",
" foot_placement = \"Too wide\"\n",
" \n",
" # * Evaluate KNEE PLACEMENT error\n",
" if knee_placement_evaluation == -1:\n",
" knee_placement = \"UNK\"\n",
" elif knee_placement_evaluation == 0:\n",
" knee_placement = \"Correct\"\n",
" elif knee_placement_evaluation == 1:\n",
" knee_placement = \"Too tight\"\n",
" elif knee_placement_evaluation == 2:\n",
" knee_placement = \"Too wide\"\n",
" \n",
" # Visualization\n",
" # Status box\n",
" cv2.rectangle(image, (0, 0), (500, 60), (245, 117, 16), -1)\n",
"\n",
" # Display class\n",
" cv2.putText(image, \"COUNT\", (10, 12), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)\n",
" cv2.putText(image, f'{str(counter)}, {predicted_class.split(\" \")[0]}, {str(prediction_probability)}', (5, 40), cv2.FONT_HERSHEY_COMPLEX, .7, (255, 255, 255), 2, cv2.LINE_AA)\n",
"\n",
" # Display Foot and Shoulder width ratio\n",
" cv2.putText(image, \"FOOT\", (200, 12), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)\n",
" cv2.putText(image, foot_placement, (195, 40), cv2.FONT_HERSHEY_COMPLEX, .7, (255, 255, 255), 2, cv2.LINE_AA)\n",
"\n",
" # Display knee and Shoulder width ratio\n",
" cv2.putText(image, \"KNEE\", (330, 12), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)\n",
" cv2.putText(image, knee_placement, (325, 40), cv2.FONT_HERSHEY_COMPLEX, .7, (255, 255, 255), 2, cv2.LINE_AA)\n",
"\n",
" except Exception as e:\n",
" print(f\"Error: {e}\")\n",
" \n",
" cv2.imshow(\"CV2\", image)\n",
" \n",
" # Press Q to close cv2 window\n",
" if cv2.waitKey(1) & 0xFF == ord('q'):\n",
" break\n",
"\n",
" cap.release()\n",
" cv2.destroyAllWindows()\n",
"\n",
" # (Optional)Fix bugs cannot close windows in MacOS (https://stackoverflow.com/questions/6116564/destroywindow-does-not-close-window-on-mac-using-python-and-opencv)\n",
" for i in range (1, 5):\n",
" cv2.waitKey(1)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.13 (conda)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "9260f401923fb5c4108c543a7d176de9733d378b3752e49535ad7c43c2271b65"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|