Spaces:
Configuration error
Configuration error
import cv2 | |
import mediapipe as mp | |
import numpy as np | |
import pandas as pd | |
import pickle | |
from .utils import ( | |
calculate_distance, | |
extract_important_keypoints, | |
get_static_file_url, | |
get_drawing_color, | |
) | |
mp_pose = mp.solutions.pose | |
mp_drawing = mp.solutions.drawing_utils | |
def analyze_foot_knee_placement( | |
results, | |
stage: str, | |
foot_shoulder_ratio_thresholds: list, | |
knee_foot_ratio_thresholds: dict, | |
visibility_threshold: int, | |
) -> dict: | |
""" | |
Calculate the ratio between the foot and shoulder for FOOT PLACEMENT analysis | |
Calculate the ratio between the knee and foot for KNEE PLACEMENT analysis | |
Return result explanation: | |
-1: Unknown result due to poor visibility | |
0: Correct knee placement | |
1: Placement too tight | |
2: Placement too wide | |
""" | |
analyzed_results = { | |
"foot_placement": -1, | |
"knee_placement": -1, | |
} | |
landmarks = results.pose_landmarks.landmark | |
# * Visibility check of important landmarks for foot placement analysis | |
left_foot_index_vis = landmarks[ | |
mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value | |
].visibility | |
right_foot_index_vis = landmarks[ | |
mp_pose.PoseLandmark.RIGHT_FOOT_INDEX.value | |
].visibility | |
left_knee_vis = landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].visibility | |
right_knee_vis = landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].visibility | |
# If visibility of any keypoints is low cancel the analysis | |
if ( | |
left_foot_index_vis < visibility_threshold | |
or right_foot_index_vis < visibility_threshold | |
or left_knee_vis < visibility_threshold | |
or right_knee_vis < visibility_threshold | |
): | |
return analyzed_results | |
# * Calculate shoulder width | |
left_shoulder = [ | |
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x, | |
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y, | |
] | |
right_shoulder = [ | |
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].x, | |
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y, | |
] | |
shoulder_width = calculate_distance(left_shoulder, right_shoulder) | |
# * Calculate 2-foot width | |
left_foot_index = [ | |
landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].x, | |
landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].y, | |
] | |
right_foot_index = [ | |
landmarks[mp_pose.PoseLandmark.RIGHT_FOOT_INDEX.value].x, | |
landmarks[mp_pose.PoseLandmark.RIGHT_FOOT_INDEX.value].y, | |
] | |
foot_width = calculate_distance(left_foot_index, right_foot_index) | |
# * Calculate foot and shoulder ratio | |
foot_shoulder_ratio = round(foot_width / shoulder_width, 1) | |
# * Analyze FOOT PLACEMENT | |
min_ratio_foot_shoulder, max_ratio_foot_shoulder = foot_shoulder_ratio_thresholds | |
if min_ratio_foot_shoulder <= foot_shoulder_ratio <= max_ratio_foot_shoulder: | |
analyzed_results["foot_placement"] = 0 | |
elif foot_shoulder_ratio < min_ratio_foot_shoulder: | |
analyzed_results["foot_placement"] = 1 | |
elif foot_shoulder_ratio > max_ratio_foot_shoulder: | |
analyzed_results["foot_placement"] = 2 | |
# * Visibility check of important landmarks for knee placement analysis | |
left_knee_vis = landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].visibility | |
right_knee_vis = landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].visibility | |
# If visibility of any keypoints is low cancel the analysis | |
if left_knee_vis < visibility_threshold or right_knee_vis < visibility_threshold: | |
print("Cannot see foot") | |
return analyzed_results | |
# * Calculate 2 knee width | |
left_knee = [ | |
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x, | |
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y, | |
] | |
right_knee = [ | |
landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].x, | |
landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].y, | |
] | |
knee_width = calculate_distance(left_knee, right_knee) | |
# * Calculate foot and shoulder ratio | |
knee_foot_ratio = round(knee_width / foot_width, 1) | |
# * Analyze KNEE placement | |
up_min_ratio_knee_foot, up_max_ratio_knee_foot = knee_foot_ratio_thresholds.get( | |
"up" | |
) | |
( | |
middle_min_ratio_knee_foot, | |
middle_max_ratio_knee_foot, | |
) = knee_foot_ratio_thresholds.get("middle") | |
down_min_ratio_knee_foot, down_max_ratio_knee_foot = knee_foot_ratio_thresholds.get( | |
"down" | |
) | |
if stage == "up": | |
if up_min_ratio_knee_foot <= knee_foot_ratio <= up_max_ratio_knee_foot: | |
analyzed_results["knee_placement"] = 0 | |
elif knee_foot_ratio < up_min_ratio_knee_foot: | |
analyzed_results["knee_placement"] = 1 | |
elif knee_foot_ratio > up_max_ratio_knee_foot: | |
analyzed_results["knee_placement"] = 2 | |
elif stage == "middle": | |
if middle_min_ratio_knee_foot <= knee_foot_ratio <= middle_max_ratio_knee_foot: | |
analyzed_results["knee_placement"] = 0 | |
elif knee_foot_ratio < middle_min_ratio_knee_foot: | |
analyzed_results["knee_placement"] = 1 | |
elif knee_foot_ratio > middle_max_ratio_knee_foot: | |
analyzed_results["knee_placement"] = 2 | |
elif stage == "down": | |
if down_min_ratio_knee_foot <= knee_foot_ratio <= down_max_ratio_knee_foot: | |
analyzed_results["knee_placement"] = 0 | |
elif knee_foot_ratio < down_min_ratio_knee_foot: | |
analyzed_results["knee_placement"] = 1 | |
elif knee_foot_ratio > down_max_ratio_knee_foot: | |
analyzed_results["knee_placement"] = 2 | |
return analyzed_results | |
class SquatDetection: | |
ML_MODEL_PATH = get_static_file_url("model/squat_model.pkl") | |
PREDICTION_PROB_THRESHOLD = 0.7 | |
VISIBILITY_THRESHOLD = 0.6 | |
FOOT_SHOULDER_RATIO_THRESHOLDS = [1.2, 2.8] | |
KNEE_FOOT_RATIO_THRESHOLDS = { | |
"up": [0.5, 1.0], | |
"middle": [0.7, 1.0], | |
"down": [0.7, 1.1], | |
} | |
def __init__(self) -> None: | |
self.init_important_landmarks() | |
self.load_machine_learning_model() | |
self.current_stage = "" | |
self.previous_stage = { | |
"feet": "", | |
"knee": "", | |
} | |
self.counter = 0 | |
self.results = [] | |
self.has_error = False | |
def init_important_landmarks(self) -> None: | |
""" | |
Determine Important landmarks for squat detection | |
""" | |
self.important_landmarks = [ | |
"NOSE", | |
"LEFT_SHOULDER", | |
"RIGHT_SHOULDER", | |
"LEFT_HIP", | |
"RIGHT_HIP", | |
"LEFT_KNEE", | |
"RIGHT_KNEE", | |
"LEFT_ANKLE", | |
"RIGHT_ANKLE", | |
] | |
# Generate all columns of the data frame | |
self.headers = ["label"] # Label column | |
for lm in self.important_landmarks: | |
self.headers += [ | |
f"{lm.lower()}_x", | |
f"{lm.lower()}_y", | |
f"{lm.lower()}_z", | |
f"{lm.lower()}_v", | |
] | |
def load_machine_learning_model(self) -> None: | |
""" | |
Load machine learning model | |
""" | |
if not self.ML_MODEL_PATH: | |
raise Exception("Cannot found squat model") | |
try: | |
with open(self.ML_MODEL_PATH, "rb") as f: | |
self.model = pickle.load(f) | |
except Exception as e: | |
raise Exception(f"Error loading model, {e}") | |
def handle_detected_results(self, video_name: str) -> tuple: | |
""" | |
Save error frame as evidence | |
""" | |
file_name, _ = video_name.split(".") | |
save_folder = get_static_file_url("images") | |
for index, error in enumerate(self.results): | |
try: | |
image_name = f"{file_name}_{index}.jpg" | |
cv2.imwrite(f"{save_folder}/{file_name}_{index}.jpg", error["frame"]) | |
self.results[index]["frame"] = image_name | |
except Exception as e: | |
print("ERROR cannot save frame: " + str(e)) | |
self.results[index]["frame"] = None | |
return self.results, self.counter | |
def clear_results(self) -> None: | |
self.current_stage = "" | |
self.previous_stage = { | |
"feet": "", | |
"knee": "", | |
} | |
self.counter = 0 | |
self.results = [] | |
self.has_error = False | |
def detect(self, mp_results, image, timestamp) -> None: | |
""" | |
Make Squat Errors detection | |
""" | |
try: | |
# * Model prediction for SQUAT counter | |
# Extract keypoints from frame for the input | |
row = extract_important_keypoints(mp_results, self.important_landmarks) | |
X = pd.DataFrame([row], columns=self.headers[1:]) | |
# Make prediction and its probability | |
predicted_class = self.model.predict(X)[0] | |
prediction_probabilities = self.model.predict_proba(X)[0] | |
prediction_probability = round( | |
prediction_probabilities[prediction_probabilities.argmax()], 2 | |
) | |
# Evaluate model prediction | |
if ( | |
predicted_class == "down" | |
and prediction_probability >= self.PREDICTION_PROB_THRESHOLD | |
): | |
self.current_stage = "down" | |
elif ( | |
self.current_stage == "down" | |
and predicted_class == "up" | |
and prediction_probability >= self.PREDICTION_PROB_THRESHOLD | |
): | |
self.current_stage = "up" | |
self.counter += 1 | |
# Analyze squat pose | |
analyzed_results = analyze_foot_knee_placement( | |
results=mp_results, | |
stage=self.current_stage, | |
foot_shoulder_ratio_thresholds=self.FOOT_SHOULDER_RATIO_THRESHOLDS, | |
knee_foot_ratio_thresholds=self.KNEE_FOOT_RATIO_THRESHOLDS, | |
visibility_threshold=self.VISIBILITY_THRESHOLD, | |
) | |
foot_placement_evaluation = analyzed_results["foot_placement"] | |
knee_placement_evaluation = analyzed_results["knee_placement"] | |
# * Evaluate FEET PLACEMENT error | |
if foot_placement_evaluation == -1: | |
feet_placement = "unknown" | |
elif foot_placement_evaluation == 0: | |
feet_placement = "correct" | |
elif foot_placement_evaluation == 1: | |
feet_placement = "too tight" | |
elif foot_placement_evaluation == 2: | |
feet_placement = "too wide" | |
# * Evaluate KNEE PLACEMENT error | |
if feet_placement == "correct": | |
if knee_placement_evaluation == -1: | |
knee_placement = "unknown" | |
elif knee_placement_evaluation == 0: | |
knee_placement = "correct" | |
elif knee_placement_evaluation == 1: | |
knee_placement = "too tight" | |
elif knee_placement_evaluation == 2: | |
knee_placement = "too wide" | |
else: | |
knee_placement = "unknown" | |
# Stage management for saving results | |
# * Feet placement | |
if feet_placement in ["too tight", "too wide"]: | |
# Stage not change | |
if self.previous_stage["feet"] == feet_placement: | |
pass | |
# Stage from correct to error | |
elif self.previous_stage["feet"] != feet_placement: | |
self.results.append( | |
{ | |
"stage": f"feet {feet_placement}", | |
"frame": image, | |
"timestamp": timestamp, | |
} | |
) | |
self.previous_stage["feet"] = feet_placement | |
# * Knee placement | |
if knee_placement in ["too tight", "too wide"]: | |
# Stage not change | |
if self.previous_stage["knee"] == knee_placement: | |
pass | |
# Stage from correct to error | |
elif self.previous_stage["knee"] != knee_placement: | |
self.results.append( | |
{ | |
"stage": f"knee {knee_placement}", | |
"frame": image, | |
"timestamp": timestamp, | |
} | |
) | |
self.previous_stage["knee"] = knee_placement | |
if feet_placement in ["too tight", "too wide"] or knee_placement in [ | |
"too tight", | |
"too wide", | |
]: | |
self.has_error = True | |
else: | |
self.has_error = False | |
# Visualization | |
# Draw landmarks and connections | |
landmark_color, connection_color = get_drawing_color(self.has_error) | |
mp_drawing.draw_landmarks( | |
image, | |
mp_results.pose_landmarks, | |
mp_pose.POSE_CONNECTIONS, | |
mp_drawing.DrawingSpec( | |
color=landmark_color, thickness=2, circle_radius=2 | |
), | |
mp_drawing.DrawingSpec( | |
color=connection_color, thickness=2, circle_radius=1 | |
), | |
) | |
# Status box | |
cv2.rectangle(image, (0, 0), (300, 40), (245, 117, 16), -1) | |
# Display class | |
cv2.putText( | |
image, | |
"COUNT", | |
(10, 12), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.3, | |
(0, 0, 0), | |
1, | |
cv2.LINE_AA, | |
) | |
cv2.putText( | |
image, | |
f'{str(self.counter)}, {predicted_class.split(" ")[0]}, {str(prediction_probability)}', | |
(5, 25), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(255, 255, 255), | |
1, | |
cv2.LINE_AA, | |
) | |
# Display Feet and Shoulder width ratio | |
cv2.putText( | |
image, | |
"FEET", | |
(130, 12), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.3, | |
(0, 0, 0), | |
1, | |
cv2.LINE_AA, | |
) | |
cv2.putText( | |
image, | |
feet_placement, | |
(125, 25), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(255, 255, 255), | |
1, | |
cv2.LINE_AA, | |
) | |
# Display knee and Shoulder width ratio | |
cv2.putText( | |
image, | |
"KNEE", | |
(225, 12), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.3, | |
(0, 0, 0), | |
1, | |
cv2.LINE_AA, | |
) | |
cv2.putText( | |
image, | |
knee_placement, | |
(220, 25), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(255, 255, 255), | |
1, | |
cv2.LINE_AA, | |
) | |
except Exception as e: | |
print(f"Error while detecting squat errors: {e}") | |