{ "cells": [ { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "import mediapipe as mp\n", "import cv2\n", "import pandas as pd\n", "import pickle\n", "\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.calibration import CalibratedClassifierCV\n", "from sklearn.linear_model import LogisticRegression, SGDClassifier\n", "from sklearn.svm import SVC\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.tree import DecisionTreeClassifier\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.naive_bayes import GaussianNB\n", "\n", "from sklearn.metrics import precision_score, accuracy_score, f1_score, recall_score, confusion_matrix\n", "\n", "import warnings\n", "warnings.filterwarnings('ignore')\n", "\n", "# Drawing helpers\n", "mp_drawing = mp.solutions.drawing_utils\n", "mp_pose = mp.solutions.pose" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. Train Model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1.1. Describe data and split dataset" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [], "source": [ "def rescale_frame(frame, percent=50):\n", " '''\n", " Rescale a frame to a certain percentage compare to its original frame\n", " '''\n", " width = int(frame.shape[1] * percent/ 100)\n", " height = int(frame.shape[0] * percent/ 100)\n", " dim = (width, height)\n", " return cv2.resize(frame, dim, interpolation = cv2.INTER_AREA)\n", "\n", "\n", "def describe_dataset(dataset_path: str):\n", " '''\n", " Describe dataset\n", " '''\n", "\n", " data = pd.read_csv(dataset_path)\n", " print(f\"Headers: {list(data.columns.values)}\")\n", " print(f'Number of rows: {data.shape[0]} \\nNumber of columns: {data.shape[1]}\\n')\n", " print(f\"Labels: \\n{data['label'].value_counts()}\\n\")\n", " print(f\"Missing values: {data.isnull().values.any()}\\n\")\n", " \n", " duplicate = data[data.duplicated()]\n", " print(f\"Duplicate Rows : {len(duplicate.sum(axis=1))}\")\n", "\n", " return data\n", "\n", "\n", "def round_up_metric_results(results) -> list:\n", " '''Round up metrics results such as precision score, recall score, ...'''\n", " return list(map(lambda el: round(el, 3), results))" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Headers: ['label', 'nose_x', 'nose_y', 'nose_z', 'nose_v', 'left_shoulder_x', 'left_shoulder_y', 'left_shoulder_z', 'left_shoulder_v', 'right_shoulder_x', 'right_shoulder_y', 'right_shoulder_z', 'right_shoulder_v', 'left_elbow_x', 'left_elbow_y', 'left_elbow_z', 'left_elbow_v', 'right_elbow_x', 'right_elbow_y', 'right_elbow_z', 'right_elbow_v', 'left_wrist_x', 'left_wrist_y', 'left_wrist_z', 'left_wrist_v', 'right_wrist_x', 'right_wrist_y', 'right_wrist_z', 'right_wrist_v', 'left_hip_x', 'left_hip_y', 'left_hip_z', 'left_hip_v', 'right_hip_x', 'right_hip_y', 'right_hip_z', 'right_hip_v', 'left_knee_x', 'left_knee_y', 'left_knee_z', 'left_knee_v', 'right_knee_x', 'right_knee_y', 'right_knee_z', 'right_knee_v', 'left_ankle_x', 'left_ankle_y', 'left_ankle_z', 'left_ankle_v', 'right_ankle_x', 'right_ankle_y', 'right_ankle_z', 'right_ankle_v', 'left_heel_x', 'left_heel_y', 'left_heel_z', 'left_heel_v', 'right_heel_x', 'right_heel_y', 'right_heel_z', 'right_heel_v', 'left_foot_index_x', 'left_foot_index_y', 'left_foot_index_z', 'left_foot_index_v', 'right_foot_index_x', 'right_foot_index_y', 'right_foot_index_z', 'right_foot_index_v']\n", "Number of rows: 28520 \n", "Number of columns: 69\n", "\n", "Labels: \n", "C 9904\n", "L 9546\n", "H 9070\n", "Name: label, dtype: int64\n", "\n", "Missing values: False\n", "\n", "Duplicate Rows : 0\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
labelnose_xnose_ynose_znose_vleft_shoulder_xleft_shoulder_yleft_shoulder_zleft_shoulder_vright_shoulder_x...right_heel_zright_heel_vleft_foot_index_xleft_foot_index_yleft_foot_index_zleft_foot_index_vright_foot_index_xright_foot_index_yright_foot_index_zright_foot_index_v
2851710.7356300.5432940.0074670.9992460.6958310.4173490.1551940.9957230.720067...0.0860100.9661310.2266010.5980750.2193050.4708300.2200790.6141200.0262650.934942
2851810.7755720.5175790.0128210.9993780.7041680.4042100.1629080.9959090.730823...0.0709110.9670700.2388100.6105910.1985910.4961400.2289070.6255590.0185910.938905
2851910.7906000.4989580.0077890.9994670.7106510.3940190.1644410.9961230.736771...0.0858720.9679430.2381970.6093290.2331980.5105830.2278230.6260680.0361270.940917
\n", "

3 rows × 69 columns

\n", "
" ], "text/plain": [ " label nose_x nose_y nose_z nose_v left_shoulder_x \\\n", "28517 1 0.735630 0.543294 0.007467 0.999246 0.695831 \n", "28518 1 0.775572 0.517579 0.012821 0.999378 0.704168 \n", "28519 1 0.790600 0.498958 0.007789 0.999467 0.710651 \n", "\n", " left_shoulder_y left_shoulder_z left_shoulder_v right_shoulder_x \\\n", "28517 0.417349 0.155194 0.995723 0.720067 \n", "28518 0.404210 0.162908 0.995909 0.730823 \n", "28519 0.394019 0.164441 0.996123 0.736771 \n", "\n", " ... right_heel_z right_heel_v left_foot_index_x left_foot_index_y \\\n", "28517 ... 0.086010 0.966131 0.226601 0.598075 \n", "28518 ... 0.070911 0.967070 0.238810 0.610591 \n", "28519 ... 0.085872 0.967943 0.238197 0.609329 \n", "\n", " left_foot_index_z left_foot_index_v right_foot_index_x \\\n", "28517 0.219305 0.470830 0.220079 \n", "28518 0.198591 0.496140 0.228907 \n", "28519 0.233198 0.510583 0.227823 \n", "\n", " right_foot_index_y right_foot_index_z right_foot_index_v \n", "28517 0.614120 0.026265 0.934942 \n", "28518 0.625559 0.018591 0.938905 \n", "28519 0.626068 0.036127 0.940917 \n", "\n", "[3 rows x 69 columns]" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = describe_dataset(\"./train.csv\")\n", "df.loc[df[\"label\"] == \"C\", \"label\"] = 0\n", "df.loc[df[\"label\"] == \"H\", \"label\"] = 1\n", "df.loc[df[\"label\"] == \"L\", \"label\"] = 2\n", "df.tail(3)" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "# Extract features and class\n", "X = df.drop(\"label\", axis=1)\n", "y = df[\"label\"].astype(\"int\")" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [], "source": [ "sc = StandardScaler()\n", "X = pd.DataFrame(sc.fit_transform(X))" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1469 0\n", "292 0\n", "1568 0\n", "Name: label, dtype: int64" ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1234)\n", "y_test.head(3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1.2. Train model using Scikit-Learn and train set evaluation" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [], "source": [ "algorithms =[(\"LR\", LogisticRegression()),\n", " (\"SVC\", SVC(probability=True)),\n", " ('KNN',KNeighborsClassifier()),\n", " (\"DTC\", DecisionTreeClassifier()),\n", " (\"SGDC\", CalibratedClassifierCV(SGDClassifier())),\n", " (\"NB\", GaussianNB()),\n", " ('RF', RandomForestClassifier()),]\n", "\n", "models = {}\n", "final_results = []\n", "\n", "for name, model in algorithms:\n", " trained_model = model.fit(X_train, y_train)\n", " models[name] = trained_model\n", "\n", " # Evaluate model\n", " model_results = model.predict(X_test)\n", "\n", " p_score = precision_score(y_test, model_results, average=None, labels=[0, 1, 2])\n", " a_score = accuracy_score(y_test, model_results)\n", " r_score = recall_score(y_test, model_results, average=None, labels=[0, 1, 2])\n", " f1_score_result = f1_score(y_test, model_results, average=None, labels=[0, 1, 2])\n", " cm = confusion_matrix(y_test, model_results, labels=[0, 1, 2])\n", " final_results.append(( name, round_up_metric_results(p_score), a_score, round_up_metric_results(r_score), round_up_metric_results(f1_score_result), cm))\n" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ModelPrecision ScoreAccuracy scoreRecall ScoreF1 scoreConfusion Matrix
0KNN[0.999, 1.0, 1.0]0.999825[1.0, 1.0, 0.999][1.0, 1.0, 1.0][[1915, 0, 0], [0, 1844, 0], [1, 0, 1944]]
1LR[0.999, 1.0, 0.999]0.999649[0.999, 1.0, 0.999][0.999, 1.0, 0.999][[1914, 0, 1], [0, 1844, 0], [1, 0, 1944]]
2SVC[0.998, 1.0, 0.999]0.999299[0.999, 1.0, 0.998][0.999, 1.0, 0.999][[1914, 0, 1], [0, 1844, 0], [3, 0, 1942]]
3RF[0.998, 1.0, 1.0]0.999474[1.0, 0.999, 0.999][0.999, 1.0, 0.999][[1915, 0, 0], [1, 1843, 0], [2, 0, 1943]]
4SGDC[0.999, 0.998, 0.999]0.998597[0.997, 1.0, 0.999][0.998, 0.999, 0.999][[1909, 4, 2], [0, 1844, 0], [2, 0, 1943]]
5DTC[0.994, 1.0, 0.999]0.997721[0.999, 0.998, 0.995][0.997, 0.999, 0.997][[1914, 0, 1], [3, 1841, 0], [9, 0, 1936]]
6NB[0.816, 0.931, 0.941]0.892532[0.883, 0.951, 0.847][0.848, 0.941, 0.892][[1690, 122, 103], [91, 1753, 0], [290, 7, 1648]]
\n", "
" ], "text/plain": [ " Model Precision Score Accuracy score Recall Score \\\n", "0 KNN [0.999, 1.0, 1.0] 0.999825 [1.0, 1.0, 0.999] \n", "1 LR [0.999, 1.0, 0.999] 0.999649 [0.999, 1.0, 0.999] \n", "2 SVC [0.998, 1.0, 0.999] 0.999299 [0.999, 1.0, 0.998] \n", "3 RF [0.998, 1.0, 1.0] 0.999474 [1.0, 0.999, 0.999] \n", "4 SGDC [0.999, 0.998, 0.999] 0.998597 [0.997, 1.0, 0.999] \n", "5 DTC [0.994, 1.0, 0.999] 0.997721 [0.999, 0.998, 0.995] \n", "6 NB [0.816, 0.931, 0.941] 0.892532 [0.883, 0.951, 0.847] \n", "\n", " F1 score Confusion Matrix \n", "0 [1.0, 1.0, 1.0] [[1915, 0, 0], [0, 1844, 0], [1, 0, 1944]] \n", "1 [0.999, 1.0, 0.999] [[1914, 0, 1], [0, 1844, 0], [1, 0, 1944]] \n", "2 [0.999, 1.0, 0.999] [[1914, 0, 1], [0, 1844, 0], [3, 0, 1942]] \n", "3 [0.999, 1.0, 0.999] [[1915, 0, 0], [1, 1843, 0], [2, 0, 1943]] \n", "4 [0.998, 0.999, 0.999] [[1909, 4, 2], [0, 1844, 0], [2, 0, 1943]] \n", "5 [0.997, 0.999, 0.997] [[1914, 0, 1], [3, 1841, 0], [9, 0, 1936]] \n", "6 [0.848, 0.941, 0.892] [[1690, 122, 103], [91, 1753, 0], [290, 7, 1648]] " ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Sort results by F1 score\n", "final_results.sort(key=lambda k: sum(k[4]), reverse=True)\n", "\n", "pd.DataFrame(final_results, columns=[\"Model\", \"Precision Score\", \"Accuracy score\", \"Recall Score\", \"F1 score\", \"Confusion Matrix\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1.3. Test set evaluation" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Headers: ['label', 'nose_x', 'nose_y', 'nose_z', 'nose_v', 'left_shoulder_x', 'left_shoulder_y', 'left_shoulder_z', 'left_shoulder_v', 'right_shoulder_x', 'right_shoulder_y', 'right_shoulder_z', 'right_shoulder_v', 'left_elbow_x', 'left_elbow_y', 'left_elbow_z', 'left_elbow_v', 'right_elbow_x', 'right_elbow_y', 'right_elbow_z', 'right_elbow_v', 'left_wrist_x', 'left_wrist_y', 'left_wrist_z', 'left_wrist_v', 'right_wrist_x', 'right_wrist_y', 'right_wrist_z', 'right_wrist_v', 'left_hip_x', 'left_hip_y', 'left_hip_z', 'left_hip_v', 'right_hip_x', 'right_hip_y', 'right_hip_z', 'right_hip_v', 'left_knee_x', 'left_knee_y', 'left_knee_z', 'left_knee_v', 'right_knee_x', 'right_knee_y', 'right_knee_z', 'right_knee_v', 'left_ankle_x', 'left_ankle_y', 'left_ankle_z', 'left_ankle_v', 'right_ankle_x', 'right_ankle_y', 'right_ankle_z', 'right_ankle_v', 'left_heel_x', 'left_heel_y', 'left_heel_z', 'left_heel_v', 'right_heel_x', 'right_heel_y', 'right_heel_z', 'right_heel_v', 'left_foot_index_x', 'left_foot_index_y', 'left_foot_index_z', 'left_foot_index_v', 'right_foot_index_x', 'right_foot_index_y', 'right_foot_index_z', 'right_foot_index_v']\n", "Number of rows: 710 \n", "Number of columns: 69\n", "\n", "Labels: \n", "H 241\n", "L 235\n", "C 234\n", "Name: label, dtype: int64\n", "\n", "Missing values: False\n", "\n", "Duplicate Rows : 0\n" ] } ], "source": [ "test_df = describe_dataset(\"./test.csv\")\n", "test_df = test_df.sample(frac=1).reset_index(drop=True)\n", "\n", "test_df.loc[test_df[\"label\"] == \"C\", \"label\"] = 0\n", "test_df.loc[test_df[\"label\"] == \"H\", \"label\"] = 1\n", "test_df.loc[test_df[\"label\"] == \"L\", \"label\"] = 2\n", "\n", "test_x = test_df.drop(\"label\", axis=1)\n", "test_y = test_df[\"label\"].astype(\"int\")\n", "\n", "test_x = pd.DataFrame(sc.transform(test_x))" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ModelPrecision ScoreAccuracy scoreRecall ScoreF1 scoreConfusion Matrix
0LR[0.987, 1.0, 1.0]0.995775[1.0, 0.996, 0.991][0.994, 0.998, 0.996][[234, 0, 0], [1, 240, 0], [2, 0, 233]]
1SVC[0.963, 1.0, 1.0]0.987324[1.0, 0.992, 0.97][0.981, 0.996, 0.985][[234, 0, 0], [2, 239, 0], [7, 0, 228]]
2SGDC[0.974, 0.975, 0.996]0.981690[0.974, 0.983, 0.987][0.974, 0.979, 0.991][[228, 6, 0], [3, 237, 1], [3, 0, 232]]
3KNN[0.869, 0.996, 1.0]0.949296[0.996, 0.992, 0.86][0.928, 0.994, 0.924][[233, 1, 0], [2, 239, 0], [33, 0, 202]]
4RF[0.765, 1.0, 1.0]0.898592[1.0, 1.0, 0.694][0.867, 1.0, 0.819][[234, 0, 0], [0, 241, 0], [72, 0, 163]]
5NB[0.892, 0.737, 0.945]0.842254[0.632, 0.942, 0.949][0.74, 0.827, 0.947][[148, 73, 13], [14, 227, 0], [4, 8, 223]]
6DTC[0.69, 1.0, 0.625]0.767606[0.543, 0.988, 0.766][0.608, 0.994, 0.688][[127, 0, 107], [2, 238, 1], [55, 0, 180]]
\n", "
" ], "text/plain": [ " Model Precision Score Accuracy score Recall Score \\\n", "0 LR [0.987, 1.0, 1.0] 0.995775 [1.0, 0.996, 0.991] \n", "1 SVC [0.963, 1.0, 1.0] 0.987324 [1.0, 0.992, 0.97] \n", "2 SGDC [0.974, 0.975, 0.996] 0.981690 [0.974, 0.983, 0.987] \n", "3 KNN [0.869, 0.996, 1.0] 0.949296 [0.996, 0.992, 0.86] \n", "4 RF [0.765, 1.0, 1.0] 0.898592 [1.0, 1.0, 0.694] \n", "5 NB [0.892, 0.737, 0.945] 0.842254 [0.632, 0.942, 0.949] \n", "6 DTC [0.69, 1.0, 0.625] 0.767606 [0.543, 0.988, 0.766] \n", "\n", " F1 score Confusion Matrix \n", "0 [0.994, 0.998, 0.996] [[234, 0, 0], [1, 240, 0], [2, 0, 233]] \n", "1 [0.981, 0.996, 0.985] [[234, 0, 0], [2, 239, 0], [7, 0, 228]] \n", "2 [0.974, 0.979, 0.991] [[228, 6, 0], [3, 237, 1], [3, 0, 232]] \n", "3 [0.928, 0.994, 0.924] [[233, 1, 0], [2, 239, 0], [33, 0, 202]] \n", "4 [0.867, 1.0, 0.819] [[234, 0, 0], [0, 241, 0], [72, 0, 163]] \n", "5 [0.74, 0.827, 0.947] [[148, 73, 13], [14, 227, 0], [4, 8, 223]] \n", "6 [0.608, 0.994, 0.688] [[127, 0, 107], [2, 238, 1], [55, 0, 180]] " ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "testset_final_results = []\n", "\n", "for name, model in models.items():\n", " # Evaluate model\n", " model_results = model.predict(test_x)\n", "\n", " p_score = precision_score(test_y, model_results, average=None, labels=[0, 1, 2])\n", " a_score = accuracy_score(test_y, model_results)\n", " r_score = recall_score(test_y, model_results, average=None, labels=[0, 1, 2])\n", " f1_score_result = f1_score(test_y, model_results, average=None, labels=[0, 1, 2])\n", " cm = confusion_matrix(test_y, model_results, labels=[0, 1, 2])\n", " testset_final_results.append(( name, round_up_metric_results(p_score), a_score, round_up_metric_results(r_score), round_up_metric_results(f1_score_result), cm ))\n", "\n", "\n", "testset_final_results.sort(key=lambda k: sum(k[4]), reverse=True)\n", "pd.DataFrame(testset_final_results, columns=[\"Model\", \"Precision Score\", \"Accuracy score\", \"Recall Score\", \"F1 score\", \"Confusion Matrix\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1.4. Dumped model and input scaler using pickle\n", "\n", "According to the evaluations, there are multiple good models at the moment, therefore, the best models are LR and Ridge." ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [], "source": [ "with open(\"./model/all_sklearn.pkl\", \"wb\") as f:\n", " pickle.dump(models, f)" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [], "source": [ "with open(\"./model/LR_model.pkl\", \"wb\") as f:\n", " pickle.dump(models[\"LR\"], f)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "with open(\"./model/SVC_model.pkl\", \"wb\") as f:\n", " pickle.dump(models[\"SVC\"], f)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "# Dump input scaler\n", "with open(\"./model/input_scaler.pkl\", \"wb\") as f:\n", " pickle.dump(sc, f)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.8.13 (conda)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "9260f401923fb5c4108c543a7d176de9733d378b3752e49535ad7c43c2271b65" } } }, "nbformat": 4, "nbformat_minor": 2 }