Spaces:
Runtime error
Runtime error
File size: 10,406 Bytes
8ba1a89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 242,
"metadata": {},
"outputs": [],
"source": [
"import cv2\n",
"import numpy as np\n",
"import os\n",
"from matplotlib import pyplot as plt\n",
"import time\n",
"import mediapipe as mp\n"
]
},
{
"cell_type": "code",
"execution_count": 243,
"metadata": {},
"outputs": [],
"source": [
"# Pre-trained pose estimation model from Google Mediapipe\n",
"mp_pose = mp.solutions.pose\n",
"\n",
"# Supported Mediapipe visualization tools\n",
"mp_drawing = mp.solutions.drawing_utils"
]
},
{
"cell_type": "code",
"execution_count": 244,
"metadata": {},
"outputs": [],
"source": [
"def mediapipe_detection(image, model):\n",
" \"\"\"\n",
" This function detects human pose estimation keypoints from webcam footage\n",
" \n",
" \"\"\"\n",
" image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # COLOR CONVERSION BGR 2 RGB\n",
" image.flags.writeable = False # Image is no longer writeable\n",
" results = model.process(image) # Make prediction\n",
" image.flags.writeable = True # Image is now writeable \n",
" image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # COLOR COVERSION RGB 2 BGR\n",
" return image, results"
]
},
{
"cell_type": "code",
"execution_count": 245,
"metadata": {},
"outputs": [],
"source": [
"def draw_landmarks(image, results):\n",
" \"\"\"\n",
" This function draws keypoints and landmarks detected by the human pose estimation model\n",
" \n",
" \"\"\"\n",
" mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,\n",
" mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2), \n",
" mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2) \n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 246,
"metadata": {},
"outputs": [],
"source": [
"def draw_detection(image, results):\n",
"\n",
" h, w, c = image.shape\n",
" cx_min = w\n",
" cy_min = h\n",
" cx_max = cy_max = 0\n",
" center = [w//2, h//2]\n",
" try:\n",
" for id, lm in enumerate(results.pose_landmarks.landmark):\n",
" cx, cy = int(lm.x * w), int(lm.y * h)\n",
" if cx < cx_min:\n",
" cx_min = cx\n",
" if cy < cy_min:\n",
" cy_min = cy\n",
" if cx > cx_max:\n",
" cx_max = cx\n",
" if cy > cy_max:\n",
" cy_max = cy\n",
" \n",
" boxW, boxH = cx_max - cx_min, cy_max - cy_min\n",
" \n",
" # center\n",
" cx, cy = cx_min + (boxW // 2), \\\n",
" cy_min + (boxH // 2) \n",
" center = [cx, cy]\n",
" \n",
" cv2.rectangle(\n",
" image, (cx_min, cy_min), (cx_max, cy_max), (255, 255, 0), 2\n",
" )\n",
" except:\n",
" pass\n",
" \n",
" return [[cx_min, cy_min], [cx_max, cy_max]], center"
]
},
{
"cell_type": "code",
"execution_count": 247,
"metadata": {},
"outputs": [],
"source": [
"def normalize(image, results, bounding_box, landmark_names):\n",
" h, w, c = image.shape\n",
" if results.pose_landmarks:\n",
" xy = {}\n",
" xy_norm = {}\n",
" i = 0\n",
" for res in results.pose_landmarks.landmark:\n",
" x = res.x * w\n",
" y = res.y * h\n",
" \n",
" x_norm = (x - bounding_box[0][0]) / (bounding_box[1][0] - bounding_box[0][0])\n",
" y_norm = (y - bounding_box[0][1]) / (bounding_box[1][1] - bounding_box[0][1])\n",
" \n",
" # xy_norm.append([x_norm, y_norm])\n",
" \n",
" xy_norm[landmark_names[i]] = [x_norm, y_norm]\n",
" i += 1\n",
" else:\n",
" # xy_norm = np.zeros([0,0] * 33)\n",
" \n",
" # xy = {landmark_names: [0,0]}\n",
" # xy_norm = {landmark_names: [0,0]}\n",
" \n",
" xy_norm = dict(zip(landmark_names, [0,0] * 33))\n",
" \n",
" return xy_norm"
]
},
{
"cell_type": "code",
"execution_count": 248,
"metadata": {},
"outputs": [],
"source": [
"def get_coordinates(landmarks, mp_pose, side, joint):\n",
" \"\"\"\n",
" Retrieves x and y coordinates of a particular keypoint from the pose estimation model\n",
" \n",
" Args:\n",
" landmarks: processed keypoints from the pose estimation model\n",
" mp_pose: Mediapipe pose estimation model\n",
" side: 'left' or 'right'. Denotes the side of the body of the landmark of interest.\n",
" joint: 'shoulder', 'elbow', 'wrist', 'hip', 'knee', or 'ankle'. Denotes which body joint is associated with the landmark of interest.\n",
" \n",
" \"\"\"\n",
" coord = getattr(mp_pose.PoseLandmark,side.upper()+\"_\"+joint.upper())\n",
" x_coord_val = landmarks[coord.value].x\n",
" y_coord_val = landmarks[coord.value].y\n",
" return [x_coord_val, y_coord_val] "
]
},
{
"cell_type": "code",
"execution_count": 249,
"metadata": {},
"outputs": [],
"source": [
"def viz_coords(image, norm_coords, landmarks, mp_pose, side, joint):\n",
" \"\"\"\n",
" Displays the joint angle value near the joint within the image frame\n",
" \n",
" \"\"\"\n",
" try:\n",
" point = side.upper()+\"_\"+joint.upper()\n",
" norm_coords = norm_coords[point]\n",
" joint = get_coordinates(landmarks, mp_pose, side, joint)\n",
" \n",
" coords = [ '%.2f' % elem for elem in joint ]\n",
" coords = ' '.join(str(coords))\n",
" norm_coords = [ '%.2f' % elem for elem in norm_coords ]\n",
" norm_coords = ' '.join(str(norm_coords))\n",
" cv2.putText(image, coords, \n",
" tuple(np.multiply(joint, [640, 480]).astype(int)), \n",
" cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA\n",
" )\n",
" cv2.putText(image, norm_coords, \n",
" tuple(np.multiply(joint, [640, 480]).astype(int) + 20), \n",
" cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 2, cv2.LINE_AA\n",
" )\n",
" except:\n",
" pass\n",
" return"
]
},
{
"cell_type": "code",
"execution_count": 250,
"metadata": {},
"outputs": [],
"source": [
"cap = cv2.VideoCapture(0) # camera object\n",
"HEIGHT = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # webcam video frame height\n",
"WIDTH = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # webcam video frame width\n",
"FPS = int(cap.get(cv2.CAP_PROP_FPS)) # webcam video fram rate \n",
"\n",
"landmark_names = dir(mp_pose.PoseLandmark)[:-4]\n",
"\n",
"# Set and test mediapipe model using webcam\n",
"with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5, enable_segmentation=True) as pose:\n",
" while cap.isOpened():\n",
"\n",
" # Read feed\n",
" ret, frame = cap.read()\n",
" \n",
" # Make detection\n",
" image, results = mediapipe_detection(frame, pose)\n",
" \n",
" # Extract landmarks\n",
" try:\n",
" landmarks = results.pose_landmarks.landmark\n",
" except:\n",
" pass\n",
" \n",
" # draw bounding box\n",
" bounding_box, box_center = draw_detection(image, results)\n",
" \n",
" # Render detections\n",
" draw_landmarks(image, results) \n",
" \n",
" # normalize coordinates\n",
" xy_norm = normalize(image, results, bounding_box, landmark_names) \n",
" viz_coords(image, xy_norm, landmarks, mp_pose, 'left', 'wrist') \n",
" viz_coords(image, xy_norm, landmarks, mp_pose, 'right', 'wrist') \n",
" \n",
" # Display frame on screen\n",
" cv2.imshow('OpenCV Feed', image)\n",
" \n",
" # Draw segmentation on the image.\n",
" # To improve segmentation around boundaries, consider applying a joint\n",
" # bilateral filter to \"results.segmentation_mask\" with \"image\".\n",
" # tightness = 0.3 # Probability threshold in [0, 1] that says how \"tight\" to make the segmentation. Greater value => tighter.\n",
" # condition = np.stack((results.segmentation_mask,) * 3, axis=-1) > tightness\n",
" # bg_image = np.zeros(image.shape, dtype=np.uint8)\n",
" # bg_image[:] = (192, 192, 192) # gray\n",
" # image = np.where(condition, image, bg_image)\n",
" \n",
" # Exit / break out logic\n",
" if cv2.waitKey(10) & 0xFF == ord('q'):\n",
" break\n",
"\n",
" cap.release()\n",
" cv2.destroyAllWindows()"
]
},
{
"cell_type": "code",
"execution_count": 251,
"metadata": {},
"outputs": [],
"source": [
"cap.release()\n",
"cv2.destroyAllWindows()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.13 ('AItrainer')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "80aa1d3f3a8cfb37a38c47373cc49a39149184c5fa770d709389b1b8782c1d85"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|