Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,103 +1,51 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import cv2
|
3 |
-
|
|
|
|
|
4 |
from tensorflow.keras.models import Model
|
5 |
from tensorflow.keras.layers import (LSTM, Dense, Dropout, Input, Flatten,
|
6 |
Bidirectional, Permute, multiply)
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
11 |
|
12 |
-
|
13 |
-
import av
|
14 |
-
|
15 |
-
## Build and Load Model
|
16 |
def attention_block(inputs, time_steps):
|
17 |
-
"""
|
18 |
-
Attention layer for deep neural network
|
19 |
-
|
20 |
-
"""
|
21 |
-
# Attention weights
|
22 |
a = Permute((2, 1))(inputs)
|
23 |
a = Dense(time_steps, activation='softmax')(a)
|
24 |
-
|
25 |
-
# Attention vector
|
26 |
a_probs = Permute((2, 1), name='attention_vec')(a)
|
27 |
-
|
28 |
-
# Luong's multiplicative score
|
29 |
output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
|
30 |
-
|
31 |
return output_attention_mul
|
32 |
|
|
|
33 |
@st.cache(allow_output_mutation=True)
|
34 |
def build_model(HIDDEN_UNITS=256, sequence_length=30, num_input_values=33*4, num_classes=3):
|
35 |
-
"""
|
36 |
-
Function used to build the deep neural network model on startup
|
37 |
-
|
38 |
-
Args:
|
39 |
-
HIDDEN_UNITS (int, optional): Number of hidden units for each neural network hidden layer. Defaults to 256.
|
40 |
-
sequence_length (int, optional): Input sequence length (i.e., number of frames). Defaults to 30.
|
41 |
-
num_input_values (_type_, optional): Input size of the neural network model. Defaults to 33*4 (i.e., number of keypoints x number of metrics).
|
42 |
-
num_classes (int, optional): Number of classification categories (i.e., model output size). Defaults to 3.
|
43 |
-
|
44 |
-
Returns:
|
45 |
-
keras model: neural network with pre-trained weights
|
46 |
-
"""
|
47 |
-
# Input
|
48 |
inputs = Input(shape=(sequence_length, num_input_values))
|
49 |
-
# Bi-LSTM
|
50 |
lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)
|
51 |
-
# Attention
|
52 |
attention_mul = attention_block(lstm_out, sequence_length)
|
53 |
attention_mul = Flatten()(attention_mul)
|
54 |
-
# Fully Connected Layer
|
55 |
x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)
|
56 |
x = Dropout(0.5)(x)
|
57 |
-
# Output
|
58 |
x = Dense(num_classes, activation='softmax')(x)
|
59 |
-
# Bring it all together
|
60 |
model = Model(inputs=[inputs], outputs=x)
|
61 |
-
|
62 |
-
## Load Model Weights
|
63 |
load_dir = "./models/LSTM_Attention.h5"
|
64 |
model.load_weights(load_dir)
|
65 |
-
|
66 |
return model
|
67 |
|
68 |
-
|
69 |
-
model = build_model(HIDDEN_UNITS)
|
70 |
-
|
71 |
-
## App
|
72 |
-
st.write("# AI Personal Fitness Trainer Web App")
|
73 |
-
|
74 |
-
st.markdown("ββ **Development Note** ββ")
|
75 |
-
st.markdown("Currently, the exercise recognition model uses the the x, y, and z coordinates of each anatomical landmark from the MediaPipe Pose model. These coordinates are normalized with respect to the image frame (e.g., the top left corner represents (x=0,y=0) and the bottom right corner represents(x=1,y=1)).")
|
76 |
-
st.markdown("I'm currently developing and testing two new feature engineering strategies:")
|
77 |
-
st.markdown("- Normalizing coordinates by the detected bounding box of the user")
|
78 |
-
st.markdown("- Using joint angles rather than keypoint coordaintes as features")
|
79 |
-
st.write("Stay Tuned!")
|
80 |
-
|
81 |
-
st.write("## Settings")
|
82 |
-
threshold1 = st.slider("Minimum Keypoint Detection Confidence", 0.00, 1.00, 0.50)
|
83 |
-
threshold2 = st.slider("Minimum Tracking Confidence", 0.00, 1.00, 0.50)
|
84 |
-
threshold3 = st.slider("Minimum Activity Classification Confidence", 0.00, 1.00, 0.50)
|
85 |
-
|
86 |
-
st.write("## Activate the AI π€ποΈββοΈ")
|
87 |
-
|
88 |
-
## Mediapipe
|
89 |
-
mp_pose = mp.solutions.pose # Pre-trained pose estimation model from Google Mediapipe
|
90 |
-
mp_drawing = mp.solutions.drawing_utils # Supported Mediapipe visualization tools
|
91 |
-
pose = mp_pose.Pose(min_detection_confidence=threshold1, min_tracking_confidence=threshold2) # mediapipe pose model
|
92 |
-
|
93 |
-
## Real Time Machine Learning and Computer Vision Processes
|
94 |
class VideoProcessor:
|
95 |
def __init__(self):
|
96 |
# Parameters
|
97 |
self.actions = np.array(['curl', 'press', 'squat'])
|
98 |
self.sequence_length = 30
|
99 |
self.colors = [(245,117,16), (117,245,16), (16,117,245)]
|
100 |
-
self.threshold =
|
|
|
|
|
101 |
|
102 |
# Detection variables
|
103 |
self.sequence = []
|
@@ -110,169 +58,212 @@ class VideoProcessor:
|
|
110 |
self.curl_stage = None
|
111 |
self.press_stage = None
|
112 |
self.squat_stage = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
"""
|
120 |
-
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
121 |
-
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
|
122 |
-
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2)
|
123 |
-
)
|
124 |
-
return
|
125 |
-
|
126 |
-
@st.cache()
|
127 |
-
def extract_keypoints(self, results):
|
128 |
-
"""
|
129 |
-
Processes and organizes the keypoints detected from the pose estimation model
|
130 |
-
to be used as inputs for the exercise decoder models
|
131 |
-
|
132 |
-
"""
|
133 |
-
pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)
|
134 |
-
return pose
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
145 |
|
146 |
-
|
147 |
-
|
|
|
|
|
148 |
|
149 |
-
if
|
150 |
-
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
"""
|
157 |
-
Retrieves x and y coordinates of a particular keypoint from the pose estimation model
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
def count_reps(self, image, landmarks, mp_pose):
|
185 |
"""
|
186 |
Counts repetitions of each exercise. Global count and stage (i.e., state) variables are updated within this function.
|
187 |
-
|
188 |
"""
|
189 |
-
|
190 |
if self.current_action == 'curl':
|
191 |
# Get coords
|
192 |
-
shoulder = self.get_coordinates(landmarks, mp_pose, '
|
193 |
-
elbow = self.get_coordinates(landmarks, mp_pose, '
|
194 |
-
wrist = self.get_coordinates(landmarks, mp_pose, '
|
195 |
-
|
196 |
# calculate elbow angle
|
197 |
angle = self.calculate_angle(shoulder, elbow, wrist)
|
198 |
-
|
199 |
# curl counter logic
|
|
|
200 |
if angle < 30:
|
201 |
-
self.curl_stage = "up"
|
202 |
-
if angle > 140 and self.curl_stage =='up':
|
203 |
-
self.curl_stage="down"
|
204 |
-
self.curl_counter +=1
|
|
|
205 |
self.press_stage = None
|
206 |
self.squat_stage = None
|
207 |
-
|
208 |
# Viz joint angle
|
209 |
self.viz_joint_angle(image, angle, elbow)
|
210 |
-
|
211 |
-
elif self.current_action == 'press':
|
212 |
# Get coords
|
213 |
-
shoulder = self.get_coordinates(landmarks, mp_pose, '
|
214 |
-
elbow = self.get_coordinates(landmarks, mp_pose, '
|
215 |
-
wrist = self.get_coordinates(landmarks, mp_pose, '
|
216 |
|
217 |
# Calculate elbow angle
|
218 |
elbow_angle = self.calculate_angle(shoulder, elbow, wrist)
|
219 |
-
|
220 |
# Compute distances between joints
|
221 |
-
shoulder2elbow_dist = abs(math.dist(shoulder,elbow))
|
222 |
-
shoulder2wrist_dist = abs(math.dist(shoulder,wrist))
|
223 |
-
|
224 |
# Press counter logic
|
|
|
|
|
|
|
225 |
if (elbow_angle > 130) and (shoulder2elbow_dist < shoulder2wrist_dist):
|
226 |
self.press_stage = "up"
|
227 |
-
if (elbow_angle < 50) and (shoulder2elbow_dist > shoulder2wrist_dist) and (self.press_stage =='up'):
|
228 |
-
self.press_stage='down'
|
229 |
self.press_counter += 1
|
|
|
|
|
|
|
230 |
self.curl_stage = None
|
231 |
self.squat_stage = None
|
232 |
-
|
233 |
# Viz joint angle
|
234 |
self.viz_joint_angle(image, elbow_angle, elbow)
|
235 |
-
|
236 |
elif self.current_action == 'squat':
|
237 |
# Get coords
|
238 |
# left side
|
239 |
-
left_shoulder = self.get_coordinates(landmarks, mp_pose, '
|
240 |
-
left_hip = self.get_coordinates(landmarks, mp_pose, '
|
241 |
-
left_knee = self.get_coordinates(landmarks, mp_pose, '
|
242 |
-
left_ankle = self.get_coordinates(landmarks, mp_pose, '
|
243 |
# right side
|
244 |
-
right_shoulder = self.get_coordinates(landmarks, mp_pose, '
|
245 |
-
right_hip = self.get_coordinates(landmarks, mp_pose, '
|
246 |
-
right_knee = self.get_coordinates(landmarks, mp_pose, '
|
247 |
-
right_ankle = self.get_coordinates(landmarks, mp_pose, '
|
248 |
-
|
249 |
# Calculate knee angles
|
250 |
left_knee_angle = self.calculate_angle(left_hip, left_knee, left_ankle)
|
251 |
right_knee_angle = self.calculate_angle(right_hip, right_knee, right_ankle)
|
252 |
-
|
253 |
# Calculate hip angles
|
254 |
left_hip_angle = self.calculate_angle(left_shoulder, left_hip, left_knee)
|
255 |
right_hip_angle = self.calculate_angle(right_shoulder, right_hip, right_knee)
|
256 |
-
|
257 |
# Squat counter logic
|
258 |
thr = 165
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
260 |
self.squat_stage = "down"
|
261 |
-
if (left_knee_angle > thr) and (right_knee_angle > thr) and (left_hip_angle > thr) and (
|
262 |
-
|
|
|
263 |
self.squat_counter += 1
|
|
|
264 |
self.curl_stage = None
|
265 |
self.press_stage = None
|
266 |
-
|
267 |
# Viz joint angles
|
268 |
self.viz_joint_angle(image, left_knee_angle, left_knee)
|
269 |
self.viz_joint_angle(image, left_hip_angle, left_hip)
|
270 |
-
|
271 |
else:
|
272 |
pass
|
273 |
return
|
274 |
-
|
275 |
-
@st.cache()
|
276 |
def prob_viz(self, res, input_frame):
|
277 |
"""
|
278 |
This function displays the model prediction probability distribution over the set of exercise classes
|
@@ -285,94 +276,49 @@ class VideoProcessor:
|
|
285 |
cv2.putText(output_frame, self.actions[num], (0, 85+num*40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.LINE_AA)
|
286 |
|
287 |
return output_frame
|
288 |
-
|
289 |
-
@st.cache()
|
290 |
-
def process(self, image):
|
291 |
-
"""
|
292 |
-
Function to process the video frame from the user's webcam and run the fitness trainer AI
|
293 |
-
|
294 |
-
Args:
|
295 |
-
image (numpy array): input image from the webcam
|
296 |
-
|
297 |
-
Returns:
|
298 |
-
numpy array: processed image with keypoint detection and fitness activity classification visualized
|
299 |
-
"""
|
300 |
-
# Pose detection model
|
301 |
-
image.flags.writeable = False
|
302 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
303 |
-
results = pose.process(image)
|
304 |
|
305 |
-
|
306 |
-
image.flags.writeable = True
|
307 |
-
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
308 |
-
self.draw_landmarks(image, results)
|
309 |
|
310 |
-
# Prediction logic
|
311 |
-
keypoints = self.extract_keypoints(results)
|
312 |
-
self.sequence.append(keypoints.astype('float32',casting='same_kind'))
|
313 |
-
self.sequence = self.sequence[-self.sequence_length:]
|
314 |
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
# Erase current action variable if no probability is above threshold
|
325 |
-
if confidence < self.threshold:
|
326 |
-
self.current_action = ''
|
327 |
|
328 |
-
# Viz probabilities
|
329 |
-
image = self.prob_viz(res, image)
|
330 |
-
|
331 |
-
# Count reps
|
332 |
-
try:
|
333 |
-
landmarks = results.pose_landmarks.landmark
|
334 |
-
self.count_reps(
|
335 |
-
image, landmarks, mp_pose)
|
336 |
-
except:
|
337 |
-
pass
|
338 |
|
339 |
-
# Display graphical information
|
340 |
-
cv2.rectangle(image, (0,0), (640, 40), self.colors[np.argmax(res)], -1)
|
341 |
-
cv2.putText(image, 'curl ' + str(self.curl_counter), (3,30),
|
342 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
343 |
-
cv2.putText(image, 'press ' + str(self.press_counter), (240,30),
|
344 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
345 |
-
cv2.putText(image, 'squat ' + str(self.squat_counter), (490,30),
|
346 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
347 |
-
|
348 |
-
# return cv2.flip(image, 1)
|
349 |
-
return image
|
350 |
-
|
351 |
-
def recv(self, frame):
|
352 |
-
"""
|
353 |
-
Receive and process video stream from webcam
|
354 |
|
355 |
-
|
356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
|
|
|
|
|
|
|
|
|
|
364 |
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
)
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
rtc_configuration=RTC_CONFIGURATION,
|
375 |
-
media_stream_constraints={"video": True, "audio": False},
|
376 |
-
video_processor_factory=VideoProcessor,
|
377 |
-
async_processing=True,
|
378 |
-
)
|
|
|
1 |
+
import os
|
2 |
import streamlit as st
|
3 |
import cv2
|
4 |
+
import mediapipe as mp
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
from tensorflow.keras.models import Model
|
8 |
from tensorflow.keras.layers import (LSTM, Dense, Dropout, Input, Flatten,
|
9 |
Bidirectional, Permute, multiply)
|
10 |
|
11 |
+
# Load the pose estimation model from Mediapipe
|
12 |
+
mp_pose = mp.solutions.pose
|
13 |
+
mp_drawing = mp.solutions.drawing_utils
|
14 |
+
pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
15 |
|
16 |
+
# Define the attention block for the LSTM model
|
|
|
|
|
|
|
17 |
def attention_block(inputs, time_steps):
|
|
|
|
|
|
|
|
|
|
|
18 |
a = Permute((2, 1))(inputs)
|
19 |
a = Dense(time_steps, activation='softmax')(a)
|
|
|
|
|
20 |
a_probs = Permute((2, 1), name='attention_vec')(a)
|
|
|
|
|
21 |
output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
|
|
|
22 |
return output_attention_mul
|
23 |
|
24 |
+
# Build and load the LSTM model
|
25 |
@st.cache(allow_output_mutation=True)
|
26 |
def build_model(HIDDEN_UNITS=256, sequence_length=30, num_input_values=33*4, num_classes=3):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
inputs = Input(shape=(sequence_length, num_input_values))
|
|
|
28 |
lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)
|
|
|
29 |
attention_mul = attention_block(lstm_out, sequence_length)
|
30 |
attention_mul = Flatten()(attention_mul)
|
|
|
31 |
x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)
|
32 |
x = Dropout(0.5)(x)
|
|
|
33 |
x = Dense(num_classes, activation='softmax')(x)
|
|
|
34 |
model = Model(inputs=[inputs], outputs=x)
|
|
|
|
|
35 |
load_dir = "./models/LSTM_Attention.h5"
|
36 |
model.load_weights(load_dir)
|
|
|
37 |
return model
|
38 |
|
39 |
+
# Define the VideoProcessor class for real-time video processing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
class VideoProcessor:
|
41 |
def __init__(self):
|
42 |
# Parameters
|
43 |
self.actions = np.array(['curl', 'press', 'squat'])
|
44 |
self.sequence_length = 30
|
45 |
self.colors = [(245,117,16), (117,245,16), (16,117,245)]
|
46 |
+
self.threshold = 0.5
|
47 |
+
|
48 |
+
self.model = build_model(256)
|
49 |
|
50 |
# Detection variables
|
51 |
self.sequence = []
|
|
|
58 |
self.curl_stage = None
|
59 |
self.press_stage = None
|
60 |
self.squat_stage = None
|
61 |
+
self.pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
62 |
+
|
63 |
+
def process_video(self, video_file):
|
64 |
+
# Get the filename from the file object
|
65 |
+
filename = "temp_video.mp4"
|
66 |
+
# Create a temporary file to write the contents of the uploaded video file
|
67 |
+
with open(filename, 'wb') as temp_file:
|
68 |
+
temp_file.write(video_file.read())
|
69 |
+
|
70 |
+
# Process the video and save the processed video to a new file
|
71 |
+
output_filename = "processed_video.mp4"
|
72 |
+
cap = cv2.VideoCapture(filename)
|
73 |
+
frame_width = int(cap.get(3))
|
74 |
+
frame_height = int(cap.get(4))
|
75 |
+
out = cv2.VideoWriter(output_filename, cv2.VideoWriter_fourcc(*'h264'), 30, (frame_width, frame_height))
|
76 |
+
while cap.isOpened():
|
77 |
+
ret, frame = cap.read()
|
78 |
+
if not ret:
|
79 |
+
break
|
80 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
81 |
+
results = self.pose.process(frame_rgb)
|
82 |
+
processed_frame = self.process_frame(frame, results)
|
83 |
+
out.write(processed_frame)
|
84 |
+
cap.release()
|
85 |
+
out.release()
|
86 |
+
|
87 |
+
# Remove the temporary file
|
88 |
+
os.remove(filename)
|
89 |
+
|
90 |
+
# Return the path to the processed video file
|
91 |
+
return output_filename
|
92 |
|
93 |
+
def process_frame(self, frame, results):
|
94 |
+
# Process the frame using the `process` function
|
95 |
+
processed_frame = self.process(frame)
|
96 |
+
return processed_frame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
def process(self, image):
|
99 |
+
|
100 |
+
# Pose detection model
|
101 |
+
image.flags.writeable = False
|
102 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
103 |
+
results = pose.process(image)
|
104 |
+
|
105 |
+
# Draw the hand annotations on the image.
|
106 |
+
image.flags.writeable = True
|
107 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
108 |
+
self.draw_landmarks(image, results)
|
109 |
|
110 |
+
# Prediction logic
|
111 |
+
keypoints = self.extract_keypoints(results)
|
112 |
+
self.sequence.append(keypoints.astype('float32',casting='same_kind'))
|
113 |
+
self.sequence = self.sequence[-self.sequence_length:]
|
114 |
|
115 |
+
if len(self.sequence) == self.sequence_length:
|
116 |
+
res = self.model.predict(np.expand_dims(self.sequence, axis=0), verbose=0)[0]
|
117 |
|
118 |
+
self.current_action = self.actions[np.argmax(res)]
|
119 |
+
confidence = np.max(res)
|
120 |
+
print("confidence", confidence) # Debug print statement
|
121 |
+
print("current action" , self.current_action)
|
|
|
|
|
122 |
|
123 |
+
# Erase current action variable if no probability is above threshold
|
124 |
+
if confidence < self.threshold:
|
125 |
+
self.current_action = ''
|
126 |
+
|
127 |
+
|
128 |
+
print("current action" , self.current_action)
|
129 |
+
|
130 |
+
|
131 |
+
# Viz probabilities
|
132 |
+
image = self.prob_viz(res, image)
|
133 |
+
|
134 |
+
# Count reps
|
135 |
+
|
136 |
+
landmarks = results.pose_landmarks.landmark
|
137 |
+
self.count_reps(image, landmarks, mp_pose)
|
138 |
+
|
139 |
+
|
140 |
+
# Display graphical information
|
141 |
+
cv2.rectangle(image, (0,0), (640, 40), self.colors[np.argmax(res)], -1)
|
142 |
+
cv2.putText(image, 'curl ' + str(self.curl_counter), (3,30),
|
143 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
144 |
+
cv2.putText(image, 'press ' + str(self.press_counter), (240,30),
|
145 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
146 |
+
cv2.putText(image, 'squat ' + str(self.squat_counter), (490,30),
|
147 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
148 |
+
|
149 |
+
return image
|
150 |
+
|
151 |
+
def draw_landmarks(self, image, results):
|
152 |
+
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
153 |
+
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
|
154 |
+
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2))
|
155 |
+
return image
|
156 |
+
|
157 |
+
def extract_keypoints(self, results):
|
158 |
+
pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)
|
159 |
+
return pose
|
160 |
+
|
161 |
def count_reps(self, image, landmarks, mp_pose):
|
162 |
"""
|
163 |
Counts repetitions of each exercise. Global count and stage (i.e., state) variables are updated within this function.
|
164 |
+
|
165 |
"""
|
166 |
+
|
167 |
if self.current_action == 'curl':
|
168 |
# Get coords
|
169 |
+
shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
|
170 |
+
elbow = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ELBOW')
|
171 |
+
wrist = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'WRIST')
|
172 |
+
|
173 |
# calculate elbow angle
|
174 |
angle = self.calculate_angle(shoulder, elbow, wrist)
|
175 |
+
|
176 |
# curl counter logic
|
177 |
+
print("Curl Angle:", angle) # Debug print statement
|
178 |
if angle < 30:
|
179 |
+
self.curl_stage = "up"
|
180 |
+
if angle > 140 and self.curl_stage == 'up':
|
181 |
+
self.curl_stage = "down"
|
182 |
+
self.curl_counter += 1
|
183 |
+
print("count:",self.curl_counter)
|
184 |
self.press_stage = None
|
185 |
self.squat_stage = None
|
186 |
+
|
187 |
# Viz joint angle
|
188 |
self.viz_joint_angle(image, angle, elbow)
|
189 |
+
|
190 |
+
elif self.current_action == 'press':
|
191 |
# Get coords
|
192 |
+
shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
|
193 |
+
elbow = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ELBOW')
|
194 |
+
wrist = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'WRIST')
|
195 |
|
196 |
# Calculate elbow angle
|
197 |
elbow_angle = self.calculate_angle(shoulder, elbow, wrist)
|
198 |
+
print(shoulder, elbow, wrist)
|
199 |
# Compute distances between joints
|
200 |
+
shoulder2elbow_dist = abs(math.dist(shoulder, elbow))
|
201 |
+
shoulder2wrist_dist = abs(math.dist(shoulder, wrist))
|
202 |
+
|
203 |
# Press counter logic
|
204 |
+
print("Press Angle:", elbow_angle) # Debug print statement
|
205 |
+
print("Shoulder to Elbow Distance:", shoulder2elbow_dist) # Debug print statement
|
206 |
+
print("Shoulder to Wrist Distance:", shoulder2wrist_dist) # Debug print statement
|
207 |
if (elbow_angle > 130) and (shoulder2elbow_dist < shoulder2wrist_dist):
|
208 |
self.press_stage = "up"
|
209 |
+
if (elbow_angle < 50) and (shoulder2elbow_dist > shoulder2wrist_dist) and (self.press_stage == 'up'):
|
210 |
+
self.press_stage = 'down'
|
211 |
self.press_counter += 1
|
212 |
+
|
213 |
+
|
214 |
+
print("count:",self.press_counter)
|
215 |
self.curl_stage = None
|
216 |
self.squat_stage = None
|
217 |
+
|
218 |
# Viz joint angle
|
219 |
self.viz_joint_angle(image, elbow_angle, elbow)
|
220 |
+
|
221 |
elif self.current_action == 'squat':
|
222 |
# Get coords
|
223 |
# left side
|
224 |
+
left_shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
|
225 |
+
left_hip = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'HIP')
|
226 |
+
left_knee = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'KNEE')
|
227 |
+
left_ankle = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ANKLE')
|
228 |
# right side
|
229 |
+
right_shoulder = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'SHOULDER')
|
230 |
+
right_hip = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'HIP')
|
231 |
+
right_knee = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'KNEE')
|
232 |
+
right_ankle = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'ANKLE')
|
233 |
+
|
234 |
# Calculate knee angles
|
235 |
left_knee_angle = self.calculate_angle(left_hip, left_knee, left_ankle)
|
236 |
right_knee_angle = self.calculate_angle(right_hip, right_knee, right_ankle)
|
237 |
+
|
238 |
# Calculate hip angles
|
239 |
left_hip_angle = self.calculate_angle(left_shoulder, left_hip, left_knee)
|
240 |
right_hip_angle = self.calculate_angle(right_shoulder, right_hip, right_knee)
|
241 |
+
|
242 |
# Squat counter logic
|
243 |
thr = 165
|
244 |
+
print("Left Knee Angle:", left_knee_angle) # Debug print statement
|
245 |
+
print("Right Knee Angle:", right_knee_angle) # Debug print statement
|
246 |
+
print("Left Hip Angle:", left_hip_angle) # Debug print statement
|
247 |
+
print("Right Hip Angle:", right_hip_angle) # Debug print statement
|
248 |
+
if (left_knee_angle < thr) and (right_knee_angle < thr) and (left_hip_angle < thr) and (
|
249 |
+
right_hip_angle < thr):
|
250 |
self.squat_stage = "down"
|
251 |
+
if (left_knee_angle > thr) and (right_knee_angle > thr) and (left_hip_angle > thr) and (
|
252 |
+
right_hip_angle > thr) and (self.squat_stage == 'down'):
|
253 |
+
self.squat_stage = 'up'
|
254 |
self.squat_counter += 1
|
255 |
+
print("count:",self.squat_counter)
|
256 |
self.curl_stage = None
|
257 |
self.press_stage = None
|
258 |
+
|
259 |
# Viz joint angles
|
260 |
self.viz_joint_angle(image, left_knee_angle, left_knee)
|
261 |
self.viz_joint_angle(image, left_hip_angle, left_hip)
|
262 |
+
|
263 |
else:
|
264 |
pass
|
265 |
return
|
266 |
+
|
|
|
267 |
def prob_viz(self, res, input_frame):
|
268 |
"""
|
269 |
This function displays the model prediction probability distribution over the set of exercise classes
|
|
|
276 |
cv2.putText(output_frame, self.actions[num], (0, 85+num*40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.LINE_AA)
|
277 |
|
278 |
return output_frame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
+
def get_coordinates(self, landmarks, mp_pose, side, part):
|
|
|
|
|
|
|
281 |
|
|
|
|
|
|
|
|
|
282 |
|
283 |
+
coord = getattr(mp_pose.PoseLandmark,side.upper()+"_"+part.upper())
|
284 |
+
x_coord_val = landmarks[coord.value].x
|
285 |
+
y_coord_val = landmarks[coord.value].y
|
286 |
+
return [x_coord_val, y_coord_val]
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
|
|
|
|
|
|
|
|
|
291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
+
def calculate_angle(self, a, b, c):
|
295 |
+
a = np.array(a)
|
296 |
+
b = np.array(b)
|
297 |
+
c = np.array(c)
|
298 |
+
radians = math.atan2(c[1]-b[1], c[0]-b[0]) - math.atan2(a[1]-b[1], a[0]-b[0])
|
299 |
+
angle = np.abs(radians*180.0/np.pi)
|
300 |
+
if angle > 180.0:
|
301 |
+
angle = 360 - angle
|
302 |
+
return angle
|
303 |
|
304 |
+
def viz_joint_angle(self, image, angle, joint):
|
305 |
+
cv2.putText(image, str(round(angle, 2)),
|
306 |
+
tuple(np.multiply(joint, [640, 480]).astype(int)),
|
307 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 2, cv2.LINE_AA)
|
308 |
+
|
309 |
+
# Define Streamlit app
|
310 |
+
def main():
|
311 |
+
st.title("Real-time Exercise Detection")
|
312 |
+
video_file = st.file_uploader("Upload a video file", type=["mp4", "avi"])
|
313 |
+
if video_file is not None:
|
314 |
+
video_processor = VideoProcessor()
|
315 |
|
316 |
+
output_video = video_processor.process_video(video_file)
|
317 |
+
|
318 |
+
|
319 |
+
video_file = open(output_video, 'rb')
|
320 |
+
video_bytes = video_file.read()
|
321 |
+
st.video(video_bytes)
|
322 |
+
|
323 |
+
if __name__ == "__main__":
|
324 |
+
main()
|
|
|
|
|
|
|
|
|
|