File size: 4,582 Bytes
81b1a0e
 
 
 
 
e797135
6284dc0
 
 
 
 
e797135
6284dc0
 
e797135
6be00d8
e797135
81b1a0e
69b7015
81b1a0e
327742a
6284dc0
327742a
 
 
 
 
81b1a0e
6284dc0
81b1a0e
327742a
81b1a0e
 
 
 
6284dc0
81b1a0e
 
 
 
a10635a
 
e7c2780
a10635a
 
 
 
 
 
81b1a0e
de0b7d0
d967d62
 
 
fbe03e2
e797135
6284dc0
 
 
 
 
7ccb658
bfe6e38
0e5a7e4
a0ef2a3
 
bfe6e38
 
b59df1c
8aa2ae3
327742a
6284dc0
 
 
81b1a0e
6284dc0
 
 
 
81b1a0e
6284dc0
81b1a0e
6284dc0
 
 
 
 
 
 
 
 
 
 
 
 
7c05f45
81b1a0e
 
fbe03e2
de5ed42
 
 
 
 
 
 
81b1a0e
 
b59df1c
 
8000135
e7c2780
b59df1c
63ad20a
81b1a0e
 
ec6f3d6
102de7f
3fdf89f
81b1a0e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces

from glob import glob
from typing import Optional, Tuple

from PIL import Image
from gradio_imageslider import ImageSlider
from transformers import AutoModelForImageSegmentation
from torchvision import transforms

torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f

device = "cuda" if torch.cuda.is_available() else "cpu"


def array_to_pil_image(image: np.ndarray, size: Tuple[int, int] = (1024, 1024)) -> Image.Image:
    image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR)
    image = Image.fromarray(image).convert('RGB')
    return image


class ImagePreprocessor():
    def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
        self.transform_image = transforms.Compose([
            # transforms.Resize(resolution),    # 1. keep consistent with the cv2.resize used in training 2. redundant with that in path_to_image()
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ])

    def proc(self, image: Image.Image) -> torch.Tensor:
        image = self.transform_image(image)
        return image


usage_to_weights_file = {
    'General': 'BiRefNet',
    'General-Lite': 'BiRefNet_T',
    'Portrait': 'BiRefNet-portrait',
    'DIS': 'BiRefNet-DIS5K',
    'HRSOD': 'BiRefNet-HRSOD',
    'COD': 'BiRefNet-COD',
    'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs'
}

birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True)
birefnet.to(device)
birefnet.eval()


@spaces.GPU
def predict(
    image: np.ndarray,
    resolution: str,
    weights_file: Optional[str]
) -> Tuple[np.ndarray, np.ndarray]:
    global birefnet
    # Load BiRefNet with chosen weights
    _weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General']))
    print('Using weights:', _weights_file)
    birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True)
    birefnet.to(device)
    birefnet.eval()

    resolution = f"{image.shape[1]}x{image.shape[0]}" if resolution == '' else resolution
    resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')]
    
    image_shape = image.shape[:2]
    image_pil = array_to_pil_image(image, tuple(resolution))

    # Preprocess the image
    image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
    image_proc = image_preprocessor.proc(image_pil)
    image_proc = image_proc.unsqueeze(0)

    # Perform the prediction
    with torch.no_grad():
        scaled_pred_tensor = birefnet(image_proc.to(device))[-1].sigmoid()

    if device == 'cuda':
        scaled_pred_tensor = scaled_pred_tensor.cpu()
    
    # Resize the prediction to match the original image shape
    pred = torch.nn.functional.interpolate(scaled_pred_tensor, size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy()

    # Apply the prediction mask to the original image
    image_pil = image_pil.resize(pred.shape[::-1])
    pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1)
    image_pred = (pred * np.array(image_pil)).astype(np.uint8)

    return image_pred


examples = [[_] for _ in glob('examples/*')][:]

# Add the option of resolution in a text box.
for idx_example, example in enumerate(examples):
    examples[idx_example].append('1024x1024')
examples.append(examples[-1].copy())
examples[-1][1] = '512x512'

demo = gr.Interface(
    fn=predict,
    inputs=[
        'image',
        gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`. Higher resolutions can be much slower for inference.", label="Resolution"),
        gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
    ],
    outputs=gr.Image(type="numpy", label="Output"),
    examples=examples,
    title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`',
    description=('Upload a picture, our model will extract a highly accurate segmentation of the subject in it. :)'
                 '\nThe resolution used in our training was `1024x1024`, thus the suggested resolution to obtain good results!\n Ours codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access.')
)
demo.launch(debug=True)