import os import cv2 import numpy as np import torch import gradio as gr import spaces from glob import glob from typing import Optional, Tuple from PIL import Image from gradio_imageslider import ImageSlider from transformers import AutoModelForImageSegmentation from torchvision import transforms torch.set_float32_matmul_precision('high') torch.jit.script = lambda f: f device = "cuda" if torch.cuda.is_available() else "cpu" def array_to_pil_image(image: np.ndarray, size: Tuple[int, int] = (1024, 1024)) -> Image.Image: image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR) image = Image.fromarray(image).convert('RGB') return image class ImagePreprocessor(): def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None: self.transform_image = transforms.Compose([ # transforms.Resize(resolution), # 1. keep consistent with the cv2.resize used in training 2. redundant with that in path_to_image() transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) def proc(self, image: Image.Image) -> torch.Tensor: image = self.transform_image(image) return image usage_to_weights_file = { 'General': 'BiRefNet', 'General-Lite': 'BiRefNet_T', 'Portrait': 'BiRefNet-portrait', 'DIS': 'BiRefNet-DIS5K', 'HRSOD': 'BiRefNet-HRSOD', 'COD': 'BiRefNet-COD', 'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs' } birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True) birefnet.to(device) birefnet.eval() @spaces.GPU def predict( image: np.ndarray, resolution: str, weights_file: Optional[str] ) -> Tuple[np.ndarray, np.ndarray]: global birefnet # Load BiRefNet with chosen weights _weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General'])) print('Using weights:', _weights_file) birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True) birefnet.to(device) birefnet.eval() resolution = f"{image.shape[1]}x{image.shape[0]}" if resolution == '' else resolution resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')] image_shape = image.shape[:2] image_pil = array_to_pil_image(image, tuple(resolution)) # Preprocess the image image_preprocessor = ImagePreprocessor(resolution=tuple(resolution)) image_proc = image_preprocessor.proc(image_pil) image_proc = image_proc.unsqueeze(0) # Perform the prediction with torch.no_grad(): scaled_pred_tensor = birefnet(image_proc.to(device))[-1].sigmoid() if device == 'cuda': scaled_pred_tensor = scaled_pred_tensor.cpu() # Resize the prediction to match the original image shape pred = torch.nn.functional.interpolate(scaled_pred_tensor, size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy() # Apply the prediction mask to the original image image_pil = image_pil.resize(pred.shape[::-1]) pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1) image_pred = (pred * np.array(image_pil)).astype(np.uint8) return image_pred examples = [[_] for _ in glob('examples/*')][:] # Add the option of resolution in a text box. for idx_example, example in enumerate(examples): examples[idx_example].append('1024x1024') examples.append(examples[-1].copy()) examples[-1][1] = '512x512' demo = gr.Interface( fn=predict, inputs=[ 'image', gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`. Higher resolutions can be much slower for inference.", label="Resolution"), gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.") ], outputs=gr.Image(type="numpy", label="Output"), examples=examples, title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`', description=('Upload a picture, our model will extract a highly accurate segmentation of the subject in it. :)' '\nThe resolution used in our training was `1024x1024`, thus the suggested resolution to obtain good results!\n Ours codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access.') ) demo.launch(debug=True)