raoufjat commited on
Commit
9e88ba9
·
verified ·
1 Parent(s): 137b342

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -7
app.py CHANGED
@@ -1,15 +1,24 @@
1
  import gradio as gr
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
3
 
4
- # Model and tokenizer names
5
- model_name = "djmax13/qween7.5-arabic-story-teller-bnb-4bit"
 
6
 
7
- # Load model and tokenizer
8
- model = AutoModelForCausalLM.from_pretrained(model_name)
9
- tokenizer = AutoTokenizer.from_pretrained(model_name)
 
 
 
 
 
 
 
10
 
11
  def generate_text(prompt):
12
- input_ids = tokenizer.encode(prompt, return_tensors="pt")
13
 
14
  # Generate text (you might need to adjust generation parameters)
15
  output = model.generate(
@@ -30,7 +39,7 @@ iface = gr.Interface(
30
  inputs=gr.Textbox(lines=5, placeholder="Enter your story prompt here..."),
31
  outputs=gr.Textbox(),
32
  title="Arabic Story Teller",
33
- description="A Qwen2.5-7B model finetuned for Arabic story generation.",
34
  )
35
 
36
  iface.launch()
 
1
  import gradio as gr
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ from peft import PeftModel, PeftConfig
4
 
5
+ # Base model and adapter model names
6
+ base_model_name = "unsloth/Qwen2.5-7B-Instruct-bnb-4bit"
7
+ adapter_model_name = "djmax13/qween7.5-arabic-story-teller-bnb-4bit"
8
 
9
+ # Load base model
10
+ base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
11
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
12
+
13
+ # Load LoRA configuration
14
+ config = PeftConfig.from_pretrained(adapter_model_name)
15
+
16
+ # Load LoRA adapter and merge it with the base model
17
+ model = PeftModel.from_pretrained(base_model, adapter_model_name)
18
+ model = model.merge_and_unload() # Optional: Merge adapter weights into base model for potential speedup
19
 
20
  def generate_text(prompt):
21
+ input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) # Move input to model's device
22
 
23
  # Generate text (you might need to adjust generation parameters)
24
  output = model.generate(
 
39
  inputs=gr.Textbox(lines=5, placeholder="Enter your story prompt here..."),
40
  outputs=gr.Textbox(),
41
  title="Arabic Story Teller",
42
+ description="A Qwen2.5-7B model finetuned for Arabic story generation using LoRA.",
43
  )
44
 
45
  iface.launch()