Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
-
import
|
2 |
from fastapi import FastAPI, HTTPException, Request
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import torch
|
|
|
|
|
6 |
|
7 |
# Khởi tạo FastAPI
|
8 |
app = FastAPI()
|
@@ -22,58 +24,87 @@ except Exception as e:
|
|
22 |
print(f"Error loading model: {e}")
|
23 |
raise
|
24 |
|
25 |
-
# Định nghĩa request body
|
26 |
class TextInput(BaseModel):
|
27 |
prompt: str
|
28 |
max_length: int = 100
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
async def generate_text(input: TextInput):
|
33 |
try:
|
34 |
-
|
35 |
-
inputs = tokenizer(input.prompt, return_tensors="pt").to(model.device)
|
36 |
-
|
37 |
-
# Sinh văn bản
|
38 |
outputs = model.generate(
|
39 |
inputs["input_ids"],
|
40 |
-
max_length=
|
41 |
num_return_sequences=1,
|
42 |
no_repeat_ngram_size=2,
|
43 |
do_sample=True,
|
44 |
top_k=50,
|
45 |
top_p=0.95
|
46 |
)
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
except Exception as e:
|
52 |
raise HTTPException(status_code=500, detail=str(e))
|
53 |
|
54 |
-
#
|
55 |
@app.get("/")
|
56 |
async def root():
|
57 |
return {"message": "Qwen2.5-0.5B API is running!"}
|
58 |
|
59 |
-
#
|
60 |
@app.get("/api_link")
|
61 |
async def get_api_link(request: Request):
|
62 |
-
|
63 |
-
host = request.
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
return {
|
69 |
"api_url": base_url,
|
70 |
"endpoints": {
|
71 |
"health_check": f"{base_url}/",
|
72 |
"generate_text": f"{base_url}/generate",
|
73 |
-
"api_link": f"{base_url}/api_link"
|
|
|
74 |
}
|
75 |
}
|
76 |
|
77 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
if __name__ == "__main__":
|
79 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
+
import gradio as gr
|
2 |
from fastapi import FastAPI, HTTPException, Request
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import torch
|
6 |
+
import uvicorn
|
7 |
+
from fastapi.responses import HTMLResponse
|
8 |
|
9 |
# Khởi tạo FastAPI
|
10 |
app = FastAPI()
|
|
|
24 |
print(f"Error loading model: {e}")
|
25 |
raise
|
26 |
|
27 |
+
# Định nghĩa request body cho API
|
28 |
class TextInput(BaseModel):
|
29 |
prompt: str
|
30 |
max_length: int = 100
|
31 |
|
32 |
+
# Hàm sinh văn bản (dùng chung cho API và Gradio)
|
33 |
+
def generate_text(prompt, max_length=100):
|
|
|
34 |
try:
|
35 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
36 |
outputs = model.generate(
|
37 |
inputs["input_ids"],
|
38 |
+
max_length=max_length,
|
39 |
num_return_sequences=1,
|
40 |
no_repeat_ngram_size=2,
|
41 |
do_sample=True,
|
42 |
top_k=50,
|
43 |
top_p=0.95
|
44 |
)
|
45 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
+
except Exception as e:
|
47 |
+
raise Exception(f"Error: {str(e)}")
|
48 |
+
|
49 |
+
# API endpoint để sinh văn bản
|
50 |
+
@app.post("/generate")
|
51 |
+
async def generate_text_api(input: TextInput):
|
52 |
+
try:
|
53 |
+
result = generate_text(input.prompt, input.max_length)
|
54 |
+
return {"generated_text": result}
|
55 |
except Exception as e:
|
56 |
raise HTTPException(status_code=500, detail=str(e))
|
57 |
|
58 |
+
# API endpoint kiểm tra sức khỏe
|
59 |
@app.get("/")
|
60 |
async def root():
|
61 |
return {"message": "Qwen2.5-0.5B API is running!"}
|
62 |
|
63 |
+
# API endpoint hiển thị URL
|
64 |
@app.get("/api_link")
|
65 |
async def get_api_link(request: Request):
|
66 |
+
scheme = request.url.scheme
|
67 |
+
host = request.url.hostname
|
68 |
+
if request.url.port:
|
69 |
+
base_url = f"{scheme}://{host}:{request.url.port}"
|
70 |
+
else:
|
71 |
+
base_url = f"{scheme}://{host}"
|
72 |
return {
|
73 |
"api_url": base_url,
|
74 |
"endpoints": {
|
75 |
"health_check": f"{base_url}/",
|
76 |
"generate_text": f"{base_url}/generate",
|
77 |
+
"api_link": f"{base_url}/api_link",
|
78 |
+
"interface": f"{base_url}/interface"
|
79 |
}
|
80 |
}
|
81 |
|
82 |
+
# Tạo giao diện Gradio
|
83 |
+
def create_gradio_interface():
|
84 |
+
with gr.Blocks(title="Qwen2.5-0.5B Text Generator") as demo:
|
85 |
+
gr.Markdown("# Qwen2.5-0.5B Text Generator")
|
86 |
+
gr.Markdown("Enter a prompt and get generated text!")
|
87 |
+
|
88 |
+
with gr.Row():
|
89 |
+
prompt_input = gr.Textbox(label="Prompt", placeholder="Type something...")
|
90 |
+
max_length_input = gr.Slider(50, 500, value=100, step=10, label="Max Length")
|
91 |
+
|
92 |
+
generate_button = gr.Button("Generate")
|
93 |
+
output_text = gr.Textbox(label="Generated Text", interactive=False)
|
94 |
+
|
95 |
+
generate_button.click(
|
96 |
+
fn=generate_text,
|
97 |
+
inputs=[prompt_input, max_length_input],
|
98 |
+
outputs=output_text
|
99 |
+
)
|
100 |
+
return demo
|
101 |
+
|
102 |
+
# Thêm endpoint để hiển thị giao diện Gradio
|
103 |
+
@app.get("/interface", response_class=HTMLResponse)
|
104 |
+
async def gradio_interface(request: Request):
|
105 |
+
gradio_app = create_gradio_interface()
|
106 |
+
return HTMLResponse(content=gradio_app.render())
|
107 |
+
|
108 |
+
# Chạy ứng dụng nếu không trên Hugging Face Spaces
|
109 |
if __name__ == "__main__":
|
110 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|