Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import torch | |
# Load model and tokenizer | |
model_name = "VietAI/envit5-translation" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
def translate(text, source_lang): | |
"""Translate text based on the source language.""" | |
input_text = f"{source_lang}: {text}" | |
inputs = tokenizer(input_text, return_tensors="pt", padding=True).input_ids.to('cpu') | |
outputs = model.generate(inputs, max_length=512) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Create UI | |
demo = gr.Interface( | |
fn=translate, | |
inputs=[gr.Textbox(label="Input Text"), gr.Radio(["vi", "en"], label="Source Language")], | |
outputs=gr.Textbox(label="Translated Text"), | |
title="VietAI Translation", | |
description="Translate between Vietnamese and English using envit5-translation model." | |
) | |
# Launch app | |
demo.launch() | |