import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch # Load model and tokenizer model_name = "VietAI/envit5-translation" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) def translate(text, source_lang): """Translate text based on the source language.""" input_text = f"{source_lang}: {text}" inputs = tokenizer(input_text, return_tensors="pt", padding=True).input_ids.to('cpu') outputs = model.generate(inputs, max_length=512) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Create UI demo = gr.Interface( fn=translate, inputs=[gr.Textbox(label="Input Text"), gr.Radio(["vi", "en"], label="Source Language")], outputs=gr.Textbox(label="Translated Text"), title="VietAI Translation", description="Translate between Vietnamese and English using envit5-translation model." ) # Launch app demo.launch()