raphgonda commited on
Commit
6527255
·
verified ·
1 Parent(s): d23691e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -54
app.py CHANGED
@@ -1,64 +1,29 @@
1
- # Import necessary libraries
2
- from transformers import pipeline
 
 
 
 
3
 
4
- # Load the Filipino sentiment analysis model using TensorFlow weights
5
- pipe = pipeline("text-classification", model="raphgonda/FilipinoShopping", framework="tf", from_tf=True)
6
 
7
  # Define the sentiment analysis function
8
  def analyze_sentiment(text):
9
  try:
10
- # Predict sentiment using the model
11
- results = pipe(text)
12
- # Extract label and score
13
- label = results[0]["label"]
14
- score = round(results[0]["score"] * 100, 2) # Convert score to percentage
15
  return label, f"{score}%"
16
  except Exception as e:
17
- return "Error", "N/A"
18
-
19
- # Deploy with Gradio (same as before)
20
- import gradio as gr
21
-
22
- with gr.Blocks() as interface:
23
- gr.Markdown("<h1 style='text-align: center;'>Filipino Sentiment Analysis</h1>")
24
- gr.Markdown("<p style='text-align: center;'>Enter text in Filipino to analyze its sentiment using the FilipinoShopping model.</p>")
25
-
26
- with gr.Row():
27
- input_text = gr.Textbox(
28
- label="Enter text to analyze its sentiment",
29
- placeholder="Type your text here...",
30
- )
31
-
32
- with gr.Row():
33
- submit_btn = gr.Button("Submit")
34
- clear_btn = gr.Button("Clear")
35
-
36
- sentiment_label = gr.Textbox(label="Sentiment Label", interactive=False, visible=True)
37
-
38
- with gr.Row():
39
- emotion_score = gr.Textbox(label="Emotion Score", interactive=False)
40
-
41
- examples = gr.Examples(
42
- examples=[
43
- ["Okay ang aesthetic"],
44
- ["Mabagal ang delivery"],
45
- ["Napakaganda ng serbisyo!"],
46
- ["Ang pangit ng produkto."]
47
- ],
48
- inputs=input_text,
49
- )
50
 
51
- # Define the function connection
52
- submit_btn.click(
53
- analyze_sentiment,
54
- inputs=[input_text],
55
- outputs=[sentiment_label, emotion_score],
56
- )
57
- clear_btn.click(
58
- lambda: ("", ""),
59
- inputs=[],
60
- outputs=[sentiment_label, emotion_score],
61
- )
62
 
63
- # Launch the app
64
  interface.launch()
 
1
+ from transformers import AutoTokenizer, TFAutoModelForSequenceClassification, pipeline
2
+ import gradio as gr
3
+
4
+ # Load tokenizer and model explicitly
5
+ tokenizer = AutoTokenizer.from_pretrained("raphgonda/FilipinoShopping")
6
+ model = TFAutoModelForSequenceClassification.from_pretrained("raphgonda/FilipinoShopping")
7
 
8
+ # Create a pipeline
9
+ pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, framework="tf")
10
 
11
  # Define the sentiment analysis function
12
  def analyze_sentiment(text):
13
  try:
14
+ result = pipe(text)
15
+ label = result[0]["label"]
16
+ score = round(result[0]["score"] * 100, 2) # Convert score to percentage
 
 
17
  return label, f"{score}%"
18
  except Exception as e:
19
+ return "Error", str(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ # Gradio app
22
+ interface = gr.Interface(
23
+ fn=analyze_sentiment,
24
+ inputs=gr.Textbox(label="Enter Filipino Text"),
25
+ outputs=[gr.Textbox(label="Sentiment"), gr.Textbox(label="Emotion Score")],
26
+ title="Filipino Sentiment Analysis"
27
+ )
 
 
 
 
28
 
 
29
  interface.launch()