File size: 5,528 Bytes
476e75f
 
f310dba
 
 
 
 
 
476e75f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#installing dependencies

import subprocess

subprocess.run(["pip", "install", "-U", "git+https://github.com/huggingface/transformers.git"])
subprocess.run(["pip", "install", "-U", "git+https://github.com/huggingface/accelerate.git"])
subprocess.run(["pip", "install", "datasets"])
subprocess.run(["pip", "install", "evaluate"])


#setting up models and dataset

model_checkpoint = "microsoft/resnet-50"
batch_size = 128

from datasets import load_dataset


from google.colab import drive
drive.mount('/content/drive/')

from evaluate import load
metric = load("accuracy")

#loading and preparing dataset

dataset = load_dataset("imagefolder", data_dir="drive/MyDrive/Face Mask Dataset")
labels = dataset["train"].features["label"].names
label2id, id2label = dict(), dict()
for i, label in enumerate(labels):
    label2id[label] = i
    id2label[i] = label

#image processing
from transformers import AutoImageProcessor
image_processor  = AutoImageProcessor.from_pretrained(model_checkpoint)
image_processor

#data augmentation and normalization
from torchvision.transforms import (
    CenterCrop,
    Compose,
    Normalize,
    RandomHorizontalFlip,
    RandomResizedCrop,
    Resize,
    ToTensor,
    ColorJitter,
    RandomRotation
)

normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
if "height" in image_processor.size:
    size = (image_processor.size["height"], image_processor.size["width"])
    crop_size = size
    max_size = None
elif "shortest_edge" in image_processor.size:
    size = image_processor.size["shortest_edge"]
    crop_size = (size, size)
    max_size = image_processor.size.get("longest_edge")

train_transforms = Compose(
        [
            RandomResizedCrop(crop_size),
            RandomHorizontalFlip(),
            RandomRotation(degrees=15),
            ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
            ToTensor(),
            normalize,
        ]
    )

val_transforms = Compose(
        [
            Resize(size),
            CenterCrop(crop_size),
            RandomRotation(degrees=15),
            ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
            ToTensor(),
            normalize,
        ]
    )

def preprocess_train(example_batch):
    example_batch["pixel_values"] = [
        train_transforms(image.convert("RGB")) for image in example_batch["image"]
    ]
    return example_batch

def preprocess_val(example_batch):
    example_batch["pixel_values"] = [val_transforms(image.convert("RGB")) for image in example_batch["image"]]
    return example_batch

#splitting the Dataset

splits = dataset["train"].train_test_split(test_size=0.3)
train_ds = splits['train']
val_ds = splits['test']

train_ds.set_transform(preprocess_train)
val_ds.set_transform(preprocess_val)

#Model and training setup
from transformers import AutoModelForImageClassification, TrainingArguments, Trainer

model = AutoModelForImageClassification.from_pretrained(model_checkpoint,
                                                        label2id=label2id,
                                                        id2label=id2label,
                                                        ignore_mismatched_sizes = True)

model_name = model_checkpoint.split("/")[-1]

args = TrainingArguments(
    f"{model_name}-finetuned",
    remove_unused_columns=False,
    evaluation_strategy = "epoch",
    save_strategy = "epoch",
    save_total_limit = 5,
    learning_rate=1e-3,
    per_device_train_batch_size=batch_size,
    gradient_accumulation_steps=2,
    per_device_eval_batch_size=batch_size,
    num_train_epochs=2,
    warmup_ratio=0.1,
    weight_decay=0.01,
    lr_scheduler_type="cosine",
    logging_steps=10,
    load_best_model_at_end=True,
    metric_for_best_model="accuracy",)

#Metric and Data Collection
import numpy as np

def compute_metrics(eval_pred):
    """Computes accuracy on a batch of predictions"""
    predictions = np.argmax(eval_pred.predictions, axis=1)
    return metric.compute(predictions=predictions, references=eval_pred.label_ids)

import torch

def collate_fn(examples):
    pixel_values = torch.stack([example["pixel_values"] for example in examples])
    labels = torch.tensor([example["label"] for example in examples])
    return {"pixel_values": pixel_values, "labels": labels}
#test for pre-trained model
val_ds.set_transform(preprocess_val)
from transformers import Trainer, TrainingArguments

# Define evaluation arguments
eval_args = TrainingArguments(
    output_dir="./results",
    per_device_eval_batch_size=batch_size,
    remove_unused_columns=False,
)

# Initialize the Trainer
trainer = Trainer(
    model=model,
    args=eval_args,
    eval_dataset=val_ds,
    tokenizer=image_processor,
    compute_metrics=compute_metrics,
    data_collator=collate_fn,
)

# Evaluate the pre-trained model
metrics = trainer.evaluate()
print(metrics)

#Training and Evaluation
trainer = Trainer(model,
                  args,
                  train_dataset=train_ds,
                  eval_dataset=val_ds,
                  tokenizer=image_processor,
                  compute_metrics=compute_metrics,
                  data_collator=collate_fn,)

train_results = trainer.train()
# 保存模型
trainer.save_model()
trainer.log_metrics("train", train_results.metrics)
trainer.save_metrics("train", train_results.metrics)
trainer.save_state()

metrics = trainer.evaluate()
# some nice to haves:
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)