Spaces:
Sleeping
Sleeping
File size: 4,588 Bytes
a609888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import subprocess
# Install the required packages
subprocess.check_call(["pip", "install", "-U", "git+https://github.com/huggingface/transformers.git"])
subprocess.check_call(["pip", "install", "-U", "git+https://github.com/huggingface/accelerate.git"])
subprocess.check_call(["pip", "install", "datasets"])
subprocess.check_call(["pip", "install", "evaluate"])
subprocess.check_call(["pip", "install", "scikit-learn"])
subprocess.check_call(["pip", "install", "torchvision"])
model_checkpoint = "microsoft/resnet-50"
batch_size = 128
from datasets import load_dataset
from evaluate import load
metric = load("accuracy")
# Load the dataset directly from Hugging Face
dataset = load_dataset("DamarJati/Face-Mask-Detection")
labels = dataset["train"].features["label"].names
label2id, id2label = dict(), dict()
for i, label in enumerate(labels):
label2id[label] = i
id2label[i] = label
from transformers import AutoImageProcessor
image_processor = AutoImageProcessor.from_pretrained(model_checkpoint)
image_processor
from torchvision.transforms import (
CenterCrop,
Compose,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
Resize,
ToTensor,
ColorJitter,
RandomRotation
)
normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
size = image_processor.size["shortest_edge"]
train_transforms = Compose(
[
RandomResizedCrop(size),
RandomHorizontalFlip(),
RandomRotation(degrees=15),
ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
ToTensor(),
normalize,
]
)
val_transforms = Compose(
[
Resize(size),
CenterCrop(size),
RandomRotation(degrees=15),
ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
ToTensor(),
normalize,
]
)
def preprocess_train(example_batch):
example_batch["pixel_values"] = [
train_transforms(image.convert("RGB")) for image in example_batch["image"]
]
return example_batch
def preprocess_val(example_batch):
example_batch["pixel_values"] = [val_transforms(image.convert("RGB")) for image in example_batch["image"]]
return example_batch
splits = dataset["train"].train_test_split(test_size=0.3)
train_ds = splits['train']
val_ds = splits['test']
train_ds.set_transform(preprocess_train)
val_ds.set_transform(preprocess_val)
from transformers import AutoModelForImageClassification, TrainingArguments, Trainer
model = AutoModelForImageClassification.from_pretrained(model_checkpoint,
label2id=label2id,
id2label=id2label,
ignore_mismatched_sizes=True)
model_name = model_checkpoint.split("/")[-1]
args = TrainingArguments(
f"{model_name}-finetuned",
remove_unused_columns=False,
evaluation_strategy="epoch",
save_strategy="epoch",
save_total_limit=5,
learning_rate=1e-3,
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=2,
per_device_eval_batch_size=batch_size,
num_train_epochs=2,
warmup_ratio=0.1,
weight_decay=0.01,
lr_scheduler_type="cosine",
logging_steps=10,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
)
import numpy as np
def compute_metrics(eval_pred):
"""Computes accuracy on a batch of predictions"""
predictions = np.argmax(eval_pred.predictions, axis=1)
return metric.compute(predictions=predictions, references=eval_pred.label_ids)
import torch
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
labels = torch.tensor([example["label"] for example in examples])
return {"pixel_values": pixel_values, "labels": labels}
trainer = Trainer(
model=model,
args=args,
train_dataset=train_ds,
eval_dataset=val_ds,
tokenizer=image_processor,
compute_metrics=compute_metrics,
data_collator=collate_fn,
)
train_results = trainer.train()
# Save model
trainer.save_model()
trainer.log_metrics("train", train_results.metrics)
trainer.save_metrics("train", train_results.metrics)
trainer.save_state()
metrics = trainer.evaluate()
# Log and save metrics
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Print evaluation metrics
print("Evaluation Metrics:")
for key, value in metrics.items():
print(f"{key}: {value}")
|