Spaces:
Running
Running
rashid996958
commited on
Commit
·
cc079b9
1
Parent(s):
1296f70
Add application files
Browse files- app.py +76 -0
- dmt.pb +3 -0
- input/original.png +0 -0
- input/ref.png +0 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import numpy as np
|
3 |
+
from imageio.v2 import imread
|
4 |
+
import os, glob, cv2, shutil
|
5 |
+
from super_image import EdsrModel, ImageLoader
|
6 |
+
from PIL import Image
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
pb = 'dmt.pb'
|
10 |
+
style_dim = 8
|
11 |
+
img_size=256
|
12 |
+
|
13 |
+
model_scale = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=2)
|
14 |
+
|
15 |
+
def preprocess(img):
|
16 |
+
return (img / 255. - 0.5) * 2
|
17 |
+
|
18 |
+
def deprocess(img):
|
19 |
+
return (img + 1) / 2
|
20 |
+
|
21 |
+
def load_image(path):
|
22 |
+
img = cv2.resize(imread(path), (img_size, img_size))
|
23 |
+
img_ = np.expand_dims(preprocess(img), 0)
|
24 |
+
return img / 255., img_
|
25 |
+
|
26 |
+
def inference(A,B):
|
27 |
+
with tf.Graph().as_default():
|
28 |
+
output_graph_def = tf.compat.v1.GraphDef()
|
29 |
+
|
30 |
+
with open(pb, 'rb') as fr:
|
31 |
+
output_graph_def.ParseFromString(fr.read())
|
32 |
+
tf.import_graph_def(output_graph_def, name='')
|
33 |
+
|
34 |
+
sess = tf.compat.v1.Session()
|
35 |
+
sess.run(tf.compat.v1.global_variables_initializer())
|
36 |
+
graph = tf.compat.v1.get_default_graph()
|
37 |
+
Xs = graph.get_tensor_by_name('decoder_1/g:0')
|
38 |
+
X = graph.get_tensor_by_name('X:0')
|
39 |
+
Y = graph.get_tensor_by_name('Y:0')
|
40 |
+
print("1")
|
41 |
+
A_img, A_img_ = load_image(A)
|
42 |
+
B_img, B_img_ = load_image(B)
|
43 |
+
Xs_ = sess.run(Xs, feed_dict={X: A_img_, Y: B_img_})
|
44 |
+
print("2")
|
45 |
+
output = deprocess(Xs_)[0]
|
46 |
+
output = np.array(np.array(output)*255,dtype=np.uint8)
|
47 |
+
# output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
48 |
+
|
49 |
+
image = Image.fromarray(output)
|
50 |
+
inputs = ImageLoader.load_image(image)
|
51 |
+
preds = model_scale(inputs)
|
52 |
+
print(preds.shape)
|
53 |
+
ImageLoader.save_image(preds, 'output/scaled_2x.png')
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
def makeupTransfer(arr1,arr2):
|
58 |
+
print("-"*8)
|
59 |
+
shutil.rmtree("input/")
|
60 |
+
os.makedirs("input/")
|
61 |
+
output1 = cv2.cvtColor(arr1, cv2.COLOR_BGR2RGB)
|
62 |
+
output2 = cv2.cvtColor(arr2, cv2.COLOR_BGR2RGB)
|
63 |
+
cv2.imwrite("input/original.png",output1)
|
64 |
+
cv2.imwrite("input/ref.png",output2)
|
65 |
+
no_makeup = "input/original.png"
|
66 |
+
makeup = "input/ref.png"
|
67 |
+
inference(no_makeup, makeup)
|
68 |
+
return cv2.cvtColor(cv2.imread("output/scaled_2x.png"), cv2.COLOR_BGR2RGB)
|
69 |
+
|
70 |
+
app = gr.Interface(fn=makeupTransfer,
|
71 |
+
inputs=[gr.Image(label="Reference Image",type='numpy'),
|
72 |
+
gr.Image(label="Makeup Image",type='numpy')],
|
73 |
+
outputs=gr.Image(label="Makeup Transfer Image",type='numpy'),
|
74 |
+
title="MakeUp Transfer APP")
|
75 |
+
|
76 |
+
app.launch(share=True)
|
dmt.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d4a54b5d6fad0b2be7939630aec03506ec8912b7a1b5e8529a709ec5e022947
|
3 |
+
size 47937309
|
input/original.png
ADDED
input/ref.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
imageio==2.31.6
|
2 |
+
numpy==1.25.2
|
3 |
+
opencv_contrib_python==4.8.0.76
|
4 |
+
opencv_python==4.8.0.76
|
5 |
+
opencv_python_headless==4.9.0.80
|
6 |
+
tensorflow==2.15.0
|
7 |
+
super-image
|
8 |
+
gradio
|