Spaces:
Sleeping
Sleeping
File size: 8,295 Bytes
95d56dc c94defe 2235d63 95d56dc 2235d63 95d56dc 700d0e6 f4d8307 700d0e6 0ca0182 95d56dc 4b09f99 c1671d1 294768e e28c898 c1671d1 e28c898 c1671d1 e28c898 c1671d1 e28c898 c1671d1 294768e c1671d1 e28c898 c1671d1 e28c898 c1671d1 e28c898 c1671d1 4b09f99 f4d8307 4c68a95 f4d8307 e28c898 f4d8307 e28c898 0ca0182 294768e f4d8307 95d56dc 7ebfc36 0ca0182 7ebfc36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import gradio as gr
import spaces
import os
import gc
import random
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd
pd.set_option("display.max_rows", 500)
pd.set_option("display.max_columns", 500)
pd.set_option("display.width", 1000)
from tqdm.auto import tqdm
import torch
import torch.nn as nn
import tokenizers
import transformers
print(f"tokenizers.__version__: {tokenizers.__version__}")
print(f"transformers.__version__: {transformers.__version__}")
print(f"torch.__version__: {torch.__version__}")
print(f"torch cuda version: {torch.version.cuda}")
from transformers import AutoTokenizer, AutoConfig
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, MistralForCausalLM
from peft import LoraConfig, get_peft_model
title = "H2O AI Predict the LLM"
description =" The objective of this [competition](https://www.kaggle.com/competitions/h2oai-predict-the-llm) was to \
detect which out of 7 possible LLM models produced a particular response. \n\n\
This demo is utilizing finetuned HuggingFaceH4/zephyr-7b-beta model for a multiclass classification task. \n\n \
Our team's solution is [here](https://www.kaggle.com/competitions/h2oai-predict-the-llm/discussion/453728)"
title = title + "\n" + description
#Theme from - https://huggingface.co/spaces/trl-lib/stack-llama/blob/main/app.py
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
### Load the model
class CFG:
num_workers = os.cpu_count()
llm_backbone = "HuggingFaceH4/zephyr-7b-beta"
tokenizer_path = "HuggingFaceH4/zephyr-7b-beta"
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path, add_prefix_space=False, use_fast=True, trust_remote_code=True, add_eos_token=True
)
batch_size = 1
max_len = 650
seed = 42
num_labels = 7
lora = True
lora_r = 4
lora_alpha = 16
lora_dropout = 0.05
lora_target_modules = ""
gradient_checkpointing = True
class CustomModel(nn.Module):
"""
Model for causal language modeling problem type.
"""
def __init__(self):
super().__init__()
self.backbone_config = AutoConfig.from_pretrained(
CFG.llm_backbone, trust_remote_code=True
)
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
)
self.model = AutoModelForCausalLM.from_pretrained(
CFG.llm_backbone,
config=self.backbone_config,
quantization_config=quantization_config,
)
if CFG.lora:
target_modules = []
for name, module in self.model.named_modules():
if (
isinstance(module, (torch.nn.Linear, torch.nn.Conv1d))
and "head" not in name
):
name = name.split(".")[-1]
if name not in target_modules:
target_modules.append(name)
lora_config = LoraConfig(
r=CFG.lora_r,
lora_alpha=CFG.lora_alpha,
target_modules=target_modules,
lora_dropout=CFG.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
if CFG.gradient_checkpointing:
self.model.enable_input_require_grads()
self.model = get_peft_model(self.model, lora_config)
self.model.print_trainable_parameters()
self.classification_head = nn.Linear(
self.backbone_config.vocab_size, CFG.num_labels, bias=False
)
self._init_weights(self.classification_head)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.backbone_config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.backbone_config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(
self,
batch
):
# disable cache if gradient checkpointing is enabled
if CFG.gradient_checkpointing:
self.model.config.use_cache = False
self.model.config.pretraining_tp = 1
output = self.model(
input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
)
output.logits = self.classification_head(output[0][:, -1].float())
# enable cache again if gradient checkpointing is enabled
if CFG.gradient_checkpointing:
self.model.config.use_cache = True
return output.logits
model = CustomModel()
### End Load the model
def do_inference(full_text):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_paths = [
'model_finetuned/HuggingFaceH4-zephyr-7b-beta_fold0_best.pth']
# config_path = ("/home/rashmi/Documents/kaggle/h2oai_predict_llm/src/models_exp56/config.pth")
def prepare_input(cfg, text):
inputs = cfg.tokenizer.encode_plus(
text,
return_tensors=None,
add_special_tokens=True,
max_length=CFG.max_len,
pad_to_max_length=True,
truncation="longest_first",
)
for k, v in inputs.items():
inputs[k] = torch.tensor(v, dtype=torch.long)
return inputs
# model = CustomModel()
state = torch.load(model_paths[0], map_location=torch.device("cpu"))
model.load_state_dict(state["model"] ,strict=False)
model.eval()
model.to(device)
inputs = prepare_input(CFG, full_text)
inputs["input_ids"] = inputs["input_ids"].reshape(1, -1).to(device)
inputs["attention_mask"] = inputs["attention_mask"].reshape(1, -1).to(device)
with torch.no_grad():
with torch.cuda.amp.autocast(
enabled=True, dtype=torch.float16, cache_enabled=True
):
y_preds = model(inputs)
y_preds = y_preds.detach().to("cpu").numpy().astype(np.float32)
y_preds= torch.softmax(torch.tensor(y_preds), 1).numpy()
result = np.argmax(y_preds)
if result == 0:
return "0. llama2-70b-chat"
elif result == 1:
return "1. wizardLM-13b"
elif result == 2:
return "2. llama2-13b-chat"
elif result == 3:
return "3. wizardLM-70b"
elif result == 4:
return "4. llama2-7b-chat"
elif result == 5:
return "5. tinyllama-1b-chat"
elif result == 6:
return "6. mistral-7b-openorca"
else:
return "Error"
def do_submit(question, response):
full_text = question + " " + response
result = do_inference(full_text)
return result
@spaces.GPU
def greet():
pass
with gr.Blocks(title=title) as demo: # theme=theme
sample_examples = pd.read_csv('sample_examples.csv')
example_list = sample_examples[['Question','Response','target']].sample(2).values.tolist()
gr.Markdown(f"## {title}")
with gr.Row():
# with gr.Column(scale=1):
# gr.Markdown("### Question and LLM Response")
question_text = gr.Textbox(lines=2, placeholder="Question:", label="")
response_text = gr.Textbox(lines=2, placeholder="Response:", label="")
target_text = gr.Textbox(lines=1, placeholder="Target:", label="", interactive=False , visible=False)
llm_num = gr.Textbox(value="", label="LLM #")
with gr.Row():
sub_btn = gr.Button("Submit")
sub_btn.click(fn=do_submit, inputs=[question_text, response_text], outputs=[llm_num])
gr.Markdown("## Sample Inputs:")
gr.Examples(
example_list,
[question_text,response_text,target_text],
# cache_examples=True,
)
demo.launch(greet) |