rashmi's picture
update
2235d63
raw
history blame
1.05 kB
import gradio as gr
import os
import gc
import random
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd
pd.set_option("display.max_rows", 500)
pd.set_option("display.max_columns", 500)
pd.set_option("display.width", 1000)
from tqdm.auto import tqdm
import torch
import torch.nn as nn
import tokenizers
import transformers
print(f"tokenizers.__version__: {tokenizers.__version__}")
print(f"transformers.__version__: {transformers.__version__}")
print(f"torch.__version__: {torch.__version__}")
print(f"torch cuda version: {torch.version.cuda}")
from transformers import AutoTokenizer, AutoConfig
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, MistralForCausalLM
from peft import LoraConfig, get_peft_model
title = "H2O AI Predict the LLM"
zero = torch.Tensor([0]).cuda()
print(zero.device) # <-- 'cpu' πŸ€”
@spaces.GPU
def greet(n):
print(zero.device) # <-- 'cuda:0' πŸ€—
return f"Hello {zero + n} Tensor"
gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text()).launch()