File size: 5,139 Bytes
d7717b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41a5a36
d7717b4
 
 
 
 
226dd1b
 
 
d7717b4
226dd1b
7849dfa
ad457bf
226dd1b
7849dfa
 
ad457bf
226dd1b
ad457bf
226dd1b
 
 
7849dfa
226dd1b
 
ad457bf
7849dfa
226dd1b
ad457bf
226dd1b
ad457bf
226dd1b
 
 
 
7849dfa
 
ad457bf
d7717b4
 
 
 
 
ad457bf
226dd1b
 
d7717b4
 
 
226dd1b
d7717b4
 
 
 
 
226dd1b
d7717b4
226dd1b
d7717b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import streamlit as st
import pickle
import pandas as pd
from catboost import CatBoostClassifier

# Load the trained model and unique values from the pickle file
with open('model_and_key_components.pkl', 'rb') as file:
    saved_components = pickle.load(file)

model = saved_components['model']
unique_values = saved_components['unique_values']

# Define the Streamlit app
def main():
    st.title("Employee Attrition Prediction App")
    st.sidebar.title("Model Settings")

    # Sidebar inputs
    with st.sidebar.expander("View Unique Values"):
        st.write("Unique values for each feature:")
        for column, values in unique_values.items():
            st.write(f"- {column}: {values}")

    # Main content
    st.write("Welcome to the Employee Attrition Prediction App!")
    st.write("This app helps HR practitioners predict employee attrition using a trained CatBoost model.")
    st.write("Please provide the following information to make a prediction:")

    # Define layout with three columns
    col1, col2, col3 = st.columns(3)

    # Column 1
    with col1:
        age = st.slider("Age", min_value=18, max_value=70, value=30)
        distance_from_home = st.slider("Distance From Home", min_value=1, max_value=30, value=10)
        environment_satisfaction = st.select_slider("Environment Satisfaction", options=[1, 2, 3, 4], value=2)
        hourly_rate = st.slider("Hourly Rate", min_value=30, max_value=100, value=65)
        job_involvement = st.select_slider("Job Involvement", options=[1, 2, 3, 4], value=2)

    # Column 2
    with col2:
        job_level = st.select_slider("Job Level", options=[1, 2, 3, 4, 5], value=3)
        job_satisfaction = st.select_slider("Job Satisfaction", options=[1, 2, 3, 4], value=2)
        monthly_income = st.slider("Monthly Income", min_value=1000, max_value=20000, value=5000)
        num_companies_worked = st.slider("Number of Companies Worked", min_value=0, max_value=10, value=2)
        over_time = st.checkbox("Over Time")

    # Column 3
    with col3:
        percent_salary_hike = st.slider("Percent Salary Hike", min_value=10, max_value=25, value=15)
        stock_option_level = st.select_slider("Stock Option Level", options=[0, 1, 2, 3], value=1)
        training_times_last_year = st.slider("Training Times Last Year", min_value=0, max_value=6, value=2)
        work_life_balance = st.select_slider("Work Life Balance", options=[1, 2, 3, 4], value=2)
        years_since_last_promotion = st.slider("Years Since Last Promotion", min_value=0, max_value=15, value=3)
        years_with_curr_manager = st.slider("Years With Current Manager", min_value=0, max_value=15, value=3)

    # Create a DataFrame to hold the user input data
    input_data = pd.DataFrame({
        'Age': [age],
        'DistanceFromHome': [distance_from_home],
        'EnvironmentSatisfaction': [environment_satisfaction],
        'HourlyRate': [hourly_rate],
        'JobInvolvement': [job_involvement],
        'JobLevel': [job_level],
        'JobSatisfaction': [job_satisfaction],
        'MonthlyIncome': [monthly_income],
        'NumCompaniesWorked': [num_companies_worked],
        'OverTime': [over_time],
        'PercentSalaryHike': [percent_salary_hike],
        'StockOptionLevel': [stock_option_level],
        'TrainingTimesLastYear': [training_times_last_year],
        'WorkLifeBalance': [work_life_balance],
        'YearsSinceLastPromotion': [years_since_last_promotion],
        'YearsWithCurrManager': [years_with_curr_manager]
    })

    # Make predictions
    prediction = model.predict(input_data)
    probability = model.predict_proba(input_data)[:, 1]

    # Display prediction
    if prediction[0] == 0:
        st.success("Employee is predicted to stay (Attrition = No)")
    else:
        st.error("Employee is predicted to leave (Attrition = Yes)")

        # Offer recommendations for retaining the employee
        st.subheader("Suggestions for retaining the employee:")
        st.markdown("- Invest in orientation programs and career development for entry-level staff, which could contribute to higher retention.")
        st.markdown("- Implement mentorship programs and career development initiatives aimed at engaging and retaining younger employees.")
        st.markdown("- Offer robust training and development programs and regular promotions to foster career growth. This investment in skills and career advancement can contribute to higher job satisfaction and retention.")
        st.markdown("- Recognize the diverse needs of employees based on marital status and consider tailoring benefits or support programs accordingly.")
        st.markdown("- Consider offering benefits that cater to the unique needs of married, single, and divorced employees.")
        st.markdown("- Introduce or enhance policies that support work-life balance for employees with families.")
        st.markdown("- Recognize the unique challenges and opportunities within each department and tailor retention strategies accordingly.")

    # Display probability
    st.write(f"Probability of Attrition: {probability[0]:.2f}")

if __name__ == "__main__":
    main()