File size: 6,008 Bytes
d7717b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41a5a36
d7717b4
 
 
 
 
226dd1b
 
 
d7717b4
5ce59f6
 
ad457bf
226dd1b
7849dfa
5ce59f6
 
 
f9d5aed
5ce59f6
226dd1b
 
7849dfa
5ce59f6
 
 
 
 
 
 
 
 
 
226dd1b
5ce59f6
 
 
ad457bf
292f81f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7717b4
 
bbe236d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import streamlit as st
import pickle
import pandas as pd
from catboost import CatBoostClassifier

# Load the trained model and unique values from the pickle file
with open('model_and_key_components.pkl', 'rb') as file:
    saved_components = pickle.load(file)

model = saved_components['model']
unique_values = saved_components['unique_values']

# Define the Streamlit app
def main():
    st.title("Employee Attrition Prediction App")
    st.sidebar.title("Model Settings")

    # Sidebar inputs
    with st.sidebar.expander("View Unique Values"):
        st.write("Unique values for each feature:")
        for column, values in unique_values.items():
            st.write(f"- {column}: {values}")

    # Main content
    st.write("Welcome to the Employee Attrition Prediction App!")
    st.write("This app helps HR practitioners predict employee attrition using a trained CatBoost model.")
    st.write("Please provide the following information to make a prediction:")

    # Define layout with three columns
    col1, col2, col3 = st.columns(3)

    # Column 1
    with col1:
        age = st.number_input("Age", min_value=18, max_value=70)
        monthly_income = st.number_input("Monthly Income")
        num_companies_worked = st.number_input("Number of Companies Worked")
        percent_salary_hike = st.number_input("Percent Salary Hike", min_value=0, max_value=25)
        training_times_last_year = st.number_input("Training Times Last Year", min_value=0, max_value=6)

    # Column 2
    with col2:
        department = st.selectbox("Department", ['Sales', 'Research & Development', 'Human Resources'])
        environment_satisfaction = st.selectbox("Environment Satisfaction", [1, 2, 3, 4])
        job_role = st.selectbox("Job Role", ['Sales Executive', 'Research Scientist', 'Laboratory Technician',
                                              'Manufacturing Director', 'Healthcare Representative', 'Manager',
                                              'Sales Representative', 'Research Director', 'Human Resources'])
        job_satisfaction = st.selectbox("Job Satisfaction", [1, 2, 3, 4])
        work_life_balance = st.selectbox("Work Life Balance", [1, 2, 3, 4])

    # Column 3
    with col3:
        over_time = st.checkbox("Over Time")
        relationship_satisfaction = st.selectbox("Relationship Satisfaction", [1, 2, 3, 4])
        years_since_last_promotion = st.number_input("Years Since Last Promotion")
        years_with_curr_manager = st.number_input("Years With Current Manager")

    # Predict button
    if st.button("Predict"):
        # Convert numerical features to strings
        age = str(age)
        monthly_income = str(monthly_income)
        num_companies_worked = str(num_companies_worked)
        percent_salary_hike = str(percent_salary_hike)
        training_times_last_year = str(training_times_last_year)
        years_since_last_promotion = str(years_since_last_promotion)
        years_with_curr_manager = str(years_with_curr_manager)

        # Create a DataFrame to hold the user input data
        input_data = pd.DataFrame({
            'Age': [age],
            'Department': [department],
            'EnvironmentSatisfaction': [environment_satisfaction],
            'JobRole': [job_role],
            'JobSatisfaction': [job_satisfaction],
            'MonthlyIncome': [monthly_income],
            'NumCompaniesWorked': [num_companies_worked],
            'OverTime': [over_time],
            'PercentSalaryHike': [percent_salary_hike],
            'RelationshipSatisfaction': [relationship_satisfaction],
            'TrainingTimesLastYear': [training_times_last_year],
            'WorkLifeBalance': [work_life_balance],
            'YearsSinceLastPromotion': [years_since_last_promotion],
            'YearsWithCurrManager': [years_with_curr_manager]
        })

        # Reorder columns to match the expected order
        input_data = input_data[['Age', 'Department', 'EnvironmentSatisfaction', 'JobRole', 'JobSatisfaction',
                                 'MonthlyIncome', 'NumCompaniesWorked', 'OverTime', 'PercentSalaryHike',
                                 'RelationshipSatisfaction', 'TrainingTimesLastYear', 'WorkLifeBalance',
                                 'YearsSinceLastPromotion', 'YearsWithCurrManager']]

        # Make predictions
        prediction = model.predict(input_data)
        probability = model.predict_proba(input_data)[:, 1]

        # Display prediction
        if prediction[0] == 0:
            st.success("Employee is predicted to stay (Attrition = No)")
        else:
            st.error("Employee is predicted to leave (Attrition = Yes)")

            # Offer recommendations for retaining the employee
            st.subheader("Suggestions for retaining the employee:")
            st.markdown("- Invest in orientation programs and career development for entry-level staff, which could contribute to higher retention.")
            st.markdown("- Implement mentorship programs and career development initiatives aimed at engaging and retaining younger employees.")
            st.markdown("- Offer robust training and development programs and regular promotions to foster career growth. This investment in skills and career advancement can contribute to higher job satisfaction and retention.")
            st.markdown("- Recognize the diverse needs of employees based on marital status and consider tailoring benefits or support programs accordingly.")
            st.markdown("- Consider offering benefits that cater to the unique needs of married, single, and divorced employees.")
            st.markdown("- Introduce or enhance policies that support work-life balance for employees with families.")
            st.markdown("- Recognize the unique challenges and opportunities within each department and tailor retention strategies accordingly.")

        # Display probability
        st.write(f"Probability of Attrition: {probability[0]*100:.2f}%")

if __name__ == "__main__":
    main()