rasmodev commited on
Commit
43bb729
·
verified ·
1 Parent(s): eb2e02c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -99
app.py CHANGED
@@ -85,105 +85,6 @@ def main():
85
  prediction = model.predict(input_data)
86
  probability = model.predict_proba(input_data)[:, 1]
87
 
88
- # Display prediction
89
- if prediction[0] == 0:
90
- st.success("Employee is predicted to stay (Attrition = No)")
91
- else:
92
- st.error("Employee is predicted to leave (Attrition = Yes)")
93
-
94
- # Offer recommendations for retaining the employee
95
- st.subheader("Suggestions for retaining the employee:")
96
- st.markdown("- Invest in orientation programs and career development for entry-level staff, which could contribute to higher retention.")
97
- st.markdown("- Implement mentorship programs and career development initiatives aimed at engaging and retaining younger employees.")
98
- st.markdown("- Offer robust training and development programs and regular promotions to foster career growth. This investment in skills and career advancement can contribute to higher job satisfaction and retention.")
99
- st.markdown("- Recognize the diverse needs of employees based on marital status and consider tailoring benefits or support programs accordingly.")
100
- st.markdown("- Consider offering benefits that cater to the unique needs of married, single, and divorced employees.")
101
- st.markdown("- Introduce or enhance policies that support work-life balance for employees with families.")
102
- st.markdown("- Recognize the unique challenges and opportunities within each department and tailor retention strategies accordingly.")
103
-
104
- # Display probability
105
- st.write(f"Probability of Attrition: {probability[0]:.2f}")
106
-
107
- if __name__ == "__main__":
108
- main()
109
- import streamlit as st
110
- import pickle
111
- import pandas as pd
112
- from catboost import CatBoostClassifier
113
-
114
- # Load the trained model and unique values from the pickle file
115
- with open('model_and_key_components.pkl', 'rb') as file:
116
- saved_components = pickle.load(file)
117
-
118
- model = saved_components['model']
119
- unique_values = saved_components['unique_values']
120
-
121
- # Define the Streamlit app
122
- def main():
123
- st.title("Employee Attrition Prediction App")
124
- st.sidebar.title("Model Settings")
125
-
126
- # Sidebar inputs
127
- with st.sidebar.expander("View Unique Values"):
128
- st.write("Unique values for each feature:")
129
- for column, values in unique_values.items():
130
- st.write(f"- {column}: {values}")
131
-
132
- # Main content
133
- st.write("Welcome to the Employee Attrition Prediction App!")
134
- st.write("This app helps HR practitioners predict employee attrition using a trained CatBoost model.")
135
- st.write("Please provide the following information to make a prediction:")
136
-
137
- # Define layout with three columns
138
- col1, col2, col3 = st.columns(3)
139
-
140
- # Column 1
141
- with col1:
142
- age = st.number_input("Age", min_value=18, max_value=70)
143
- monthly_income = st.number_input("Monthly Income", min_value=1000, max_value=20000)
144
- num_companies_worked = st.number_input("Number of Companies Worked", min_value=0, max_value=10)
145
- percent_salary_hike = st.number_input("Percent Salary Hike", min_value=10, max_value=25)
146
- training_times_last_year = st.number_input("Training Times Last Year", min_value=0, max_value=6)
147
-
148
- # Column 2
149
- with col2:
150
- department = st.selectbox("Department", ['Sales', 'Research & Development', 'Human Resources'])
151
- environment_satisfaction = st.selectbox("Environment Satisfaction", [1, 2, 3, 4])
152
- job_role = st.selectbox("Job Role", ['Sales Executive', 'Research Scientist', 'Laboratory Technician',
153
- 'Manufacturing Director', 'Healthcare Representative', 'Manager',
154
- 'Sales Representative', 'Research Director', 'Human Resources'])
155
- job_satisfaction = st.selectbox("Job Satisfaction", [1, 2, 3, 4])
156
- work_life_balance = st.selectbox("Work Life Balance", [1, 2, 3, 4])
157
-
158
- # Column 3
159
- with col3:
160
- over_time = st.checkbox("Over Time")
161
- relationship_satisfaction = st.selectbox("Relationship Satisfaction", [1, 2, 3, 4])
162
- years_since_last_promotion = st.number_input("Years Since Last Promotion", min_value=0, max_value=15)
163
- years_with_curr_manager = st.number_input("Years With Current Manager", min_value=0, max_value=15)
164
-
165
- # Create a DataFrame to hold the user input data
166
- input_data = pd.DataFrame({
167
- 'Age': [age],
168
- 'Department': [department],
169
- 'EnvironmentSatisfaction': [environment_satisfaction],
170
- 'JobRole': [job_role],
171
- 'JobSatisfaction': [job_satisfaction],
172
- 'MonthlyIncome': [monthly_income],
173
- 'NumCompaniesWorked': [num_companies_worked],
174
- 'OverTime': [over_time],
175
- 'PercentSalaryHike': [percent_salary_hike],
176
- 'RelationshipSatisfaction': [relationship_satisfaction],
177
- 'TrainingTimesLastYear': [training_times_last_year],
178
- 'WorkLifeBalance': [work_life_balance],
179
- 'YearsSinceLastPromotion': [years_since_last_promotion],
180
- 'YearsWithCurrManager': [years_with_curr_manager]
181
- })
182
-
183
- # Make predictions
184
- prediction = model.predict(input_data)
185
- probability = model.predict_proba(input_data)[:, 1]
186
-
187
  # Display prediction
188
  if prediction[0] == 0:
189
  st.success("Employee is predicted to stay (Attrition = No)")
 
85
  prediction = model.predict(input_data)
86
  probability = model.predict_proba(input_data)[:, 1]
87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
  # Display prediction
89
  if prediction[0] == 0:
90
  st.success("Employee is predicted to stay (Attrition = No)")